Poster
ImplicitSLIM and How it Improves Embedding-based Collaborative Filtering
Ilya Shenbin · Sergey Nikolenko
Halle B
Abstract:
We present ImplicitSLIM, a novel unsupervised learning approach for sparse high-dimensional data, with applications to collaborative filtering. Sparse linear methods (SLIM) and their variations show outstanding performance, but they are memory-intensive and hard to scale. ImplicitSLIM improves embedding-based models by extracting embeddings from SLIM-like models in a computationally cheap and memory-efficient way, without explicit learning of heavy SLIM-like models. We show that ImplicitSLIM improves performance and speeds up convergence for both state of the art and classical collaborative filtering methods.
Chat is not available.