Skip to yearly menu bar Skip to main content


Spotlight Poster

CrIBo: Self-Supervised Learning via Cross-Image Object-Level Bootstrapping

Tim Lebailly · Thomas Stegmüller · Behzad Bozorgtabar · Jean-Philippe Thiran · Tinne Tuytelaars

Halle B

Abstract: Leveraging nearest neighbor retrieval for self-supervised representation learning has proven beneficial with object-centric images. However, this approach faces limitations when applied to scene-centric datasets, where multiple objects within an image are only implicitly captured in the global representation. Such global bootstrapping can lead to undesirable entanglement of object representations. Furthermore, even object-centric datasets stand to benefit from a finer-grained bootstrapping approach. In response to these challenges, we introduce a novel $\textbf{Cr}$oss-$\textbf{I}$mage Object-Level $\textbf{Bo}$otstrapping method tailored to enhance dense visual representation learning. By employing object-level nearest neighbor bootstrapping throughout the training, CrIBo emerges as a notably strong and adequate candidate for in-context learning, leveraging nearest neighbor retrieval at test time. CrIBo shows state-of-the-art performance on the latter task while being highly competitive in more standard downstream segmentation tasks. Our code and pretrained models will be publicly available upon acceptance.

Chat is not available.