Skip to yearly menu bar Skip to main content


Oral

Oral 3B

Abstract:
Chat is not available.

Wed 8 May 1:00 - 1:15 PDT

Unified Generative Modeling of 3D Molecules with Bayesian Flow Networks

Yuxuan Song · Jingjing Gong · Hao Zhou · Mingyue Zheng · Jingjing Liu · Wei-Ying Ma

Advanced generative model (\textit{e.g.}, diffusion model) derived from simplified continuity assumptions of data distribution, though showing promising progress, has been difficult to apply directly to geometry generation applications due to the \textit{multi-modality} and \textit{noise-sensitive} nature of molecule geometry. This work introduces Geometric Bayesian Flow Networks (GeoBFN), which naturally fits molecule geometry by modeling diverse modalities in the differentiable parameter space of distributions. GeoBFN maintains the SE-(3) invariant density modeling property by incorporating equivariant inter-dependency modeling on parameters of distributions and unifying the probabilistic modeling of different modalities. Through optimized training and sampling techniques, we demonstrate that GeoBFN achieves state-of-the-art performance on multiple 3D molecule generation benchmarks in terms of generation quality (90.87\% molecule stability in QM9 and 85.6\% atom stability in GEOM-DRUG\footnote{The scores are reported at 1k sampling steps for fair comparison, and our scores could be further improved if sampling sufficiently longer steps.}). GeoBFN can also conduct sampling with any number of steps to reach an optimal trade-off between efficiency and quality (\textit{e.g.}, 20$\times$ speedup without sacrificing performance).

Wed 8 May 1:15 - 1:30 PDT

Learning Energy Decompositions for Partial Inference of GFlowNets

Hyosoon Jang · Minsu Kim · Sungsoo Ahn

This paper studies generative flow networks (GFlowNets) to sample objects from the Boltzmann energy distribution via a sequence of actions. In particular, we focus on improving GFlowNet with partial inference: training flow functions with the evaluation of the intermediate states or transitions. To this end, the recently developed forward-looking GFlowNet reparameterizes the flow functions based on evaluating the energy of intermediate states. However, such an evaluation of intermediate energies may (i) be too expensive or impossible to evaluate and (ii) even provide misleading training signals under large energy fluctuations along the sequence of actions. To resolve this issue, we propose learning energy decompositions for GFlowNets (LED-GFN). Our main idea is to (i) decompose the energy of an object into learnable potential functions defined on state transitions and (ii) reparameterize the flow functions using the potential functions. In particular, to produce informative local credits, we propose to regularize the potential to change smoothly over the sequence of actions. It is also noteworthy that training GFlowNet with our learned potential can preserve the optimal policy. We empirically verify the superiority of LED-GFN in five problems including the generation of unstructured and maximum independent sets, molecular graphs, and RNA sequences.

Wed 8 May 1:30 - 1:45 PDT

DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation

Jiaxiang Tang · Jiawei Ren · Hang Zhou · Ziwei Liu · Gang Zeng

Recent advances in 3D content creation mostly leverage optimization-based 3D generation via score distillation sampling (SDS).Though promising results have been exhibited, these methods often suffer from slow per-sample optimization, limiting their practical usage. In this paper, we propose DreamGaussian, a novel 3D content generation framework that achieves both efficiency and quality simultaneously. Our key insight is to design a generative 3D Gaussian Splatting model with companioned mesh extraction and texture refinement in UV space.In contrast to the occupancy pruning used in Neural Radiance Fields, we demonstrate that the progressive densification of 3D Gaussians converges significantly faster for 3D generative tasks.To further enhance the texture quality and facilitate downstream applications, we introduce an efficient algorithm to convert 3D Gaussians into textured meshes and apply a fine-tuning stage to refine the details.Extensive experiments demonstrate the superior efficiency and competitive generation quality of our proposed approach.Notably, DreamGaussian produces high-quality textured meshes in just 2 minutes from a single-view image, achieving approximately 10 times acceleration compared to existing methods.