Spotlight Poster
Poster Session 3
Halle B
Improving Offline RL by Blending Heuristics
Sinong Geng · Aldo Pacchiano · Andrey Kolobov · Ching-An Cheng
We propose Heuristic Blending (HUBL), a simple performance-improving technique for a broad class of offline RL algorithms based on value bootstrapping. HUBL modifies the Bellman operators used in these algorithms, partially replacing the bootstrapped values with heuristic ones that are estimated with Monte-Carlo returns. For trajectories with higher returns, HUBL relies more on the heuristic values and less on bootstrapping; otherwise, it leans more heavily on bootstrapping. HUBL is very easy to combine with many existing offline RL implementations by relabeling the offline datasets with adjusted rewards and discount factors. We derive a theory that explains HUBL's effect on offline RL as reducing offline RL's complexity and thus increasing its finite-sample performance. Furthermore, we empirically demonstrate that HUBL consistently improves the policy quality of four state-of-the-art bootstrapping-based offline RL algorithms (ATAC, CQL, TD3+BC, and IQL), by 9% on average over 27 datasets of the D4RL and Meta-World benchmarks.
A Restoration Network as an Implicit Prior
Yuyang Hu · Mauricio Delbracio · Peyman Milanfar · Ulugbek Kamilov
Image denoisers have been shown to be powerful priors for solving inverse problems in imaging. In this work, we introduce a generalization of these methods that allows any image restoration network to be used as an implicit prior. The proposed method uses priors specified by deep neural networks pre-trained as general restoration operators. The method provides a principled approach for adapting state-of-the-art restoration models for other inverse problems. Our theoretical result analyzes its convergence to a stationary point of a global functional associated with the restoration operator. Numerical results show that the method using a super-resolution prior achieves state-of-the-art performance both quantitatively and qualitatively. Overall, this work offers a step forward for solving inverse problems by enabling the use of powerful pre-trained restoration models as priors.
Long-Short-Range Message-Passing: A Fragmentation-Based Framework to Capture Non-Local Atomistic Interactions
Yunyang Li · Yusong Wang · Lin Huang · Han Yang · Xinran Wei · Jia Zhang · Tong Wang · Zun Wang · Bin Shao · Tie-Yan Liu
Computational simulation of chemical and biological systems using ab initio molecular dynamics has been a challenge over decades. Researchers have attempted to address the problem with machine learning and fragmentation-based methods. However, the two approaches fail to give a satisfactory description of long-range and many-body interactions, respectively. Inspired by fragmentation-based methods, we propose the Long-Short-Range Message-Passing (LSR-MP) framework as a generalization of the existing equivariant graph neural networks (EGNNs) with the intent to incorporate long-range interactions efficiently and effectively. We apply the LSR-MP framework to the recently proposed ViSNet and demonstrate the state-of-the-art results with up to 40% MAE reduction for molecules in MD22 and Chignolin datasets. Consistent improvements to various EGNNs will also be discussed to illustrate the general applicability and robustness of our LSR-MP framework. The code for our experiments and trained model weights could be found at https://anonymous.4open.science/r/LSRM-760E/.
Mirage: Model-agnostic Graph Distillation for Graph Classification
Mridul Gupta · Sahil Manchanda · HARIPRASAD KODAMANA · Sayan Ranu
GNNs, like other deep learning models, are data and computation hungry. There is a pressing need to scale training of GNNs on large datasets to enable their usage on low-resource environments. Graph distillation is an effort in that direction with the aim to construct a smaller synthetic training set from the original training data without significantly compromising model performance. While initial efforts are promising, this work is motivated by two key observations: (1) Existing graph distillation algorithms themselves rely on training with the full dataset, which undermines the very premise of graph distillation. (2) The distillation process is specific to the target GNN architecture and hyper-parameters and thus not robust to changes in the modeling pipeline. We circumvent these limitations by designing a distillation algorithm called MIRAGE for graph classification. MIRAGE is built on the insight that a message-passing GNN decomposes the input graph into a multiset of computation trees. Furthermore, the frequency distribution of computation trees is often skewed in nature, enabling us to condense this data into a concise distilled summary. By compressing the computation data itself, as opposed to emulating gradient flows on the original training set—a prevalent approach to date—MIRAGE transforms into an unsupervised and architecture-agnostic distillation algorithm. Extensive benchmarking on real-world datasets underscores MIRAGE’s superiority, showcasing enhanced generalization accuracy, data compression, and distillation efficiency when compared to state-of-the-art baselines.
Effectively Leveraging Capacity for Improved Deterministic Robustness Certification
Kai Hu · Klas Leino · Zifan Wang · Matt Fredrikson
Recent studies have highlighted the potential of Lipschitz-based methods for training certifiably robust neural networks against adversarial attacks.A key challenge, supported both theoretically and empirically, is that robustness demands greater network capacity and more data than standard training. However, effectively adding capacity under stringent Lipschitz constraints has proven more difficult than it may seem, evident by the fact that state-of-the-art approach tend more towards \emph{underfitting} than overfitting.Moreover, we posit that a lack of careful exploration of the design space for Lipshitz-based approaches has left potential performance gains on the table.In this work, we provide a more comprehensive evaluation to better uncover the potential of Lipschitz-based certification methods.Using a combination of novel techniques, design optimizations, and synthesis of prior work, we are able to significantly improve the state-of-the-art VRA for deterministic certification on a variety of benchmark datasets, and over a range of perturbation sizes.Of particular note, we discover that the addition of large ``Cholesky-orthogonalized residual dense'' layers to the end of existing state-of-the-art Lipschitz-controlled ResNet architectures is especially effective for increasing network capacity and performance.Combined with filtered generative data augmentation, our final results further the state of the art deterministic VRA by up to 8.5 percentage points.
RetroBridge: Modeling Retrosynthesis with Markov Bridges
Ilia Igashov · Arne Schneuing · Marwin Segler · Michael Bronstein · Bruno Correia
Retrosynthesis planning is a fundamental challenge in chemistry which aims at designing multi-step reaction pathways from commercially available starting materials to a target molecule. Each step in multi-step retrosynthesis planning requires accurate prediction of possible precursor molecules given the target molecule and confidence estimates to guide heuristic search algorithms. We model single-step retrosynthesis as a distribution learning problem in a discrete state space. First, we introduce the Markov Bridge Model, a generative framework aimed to approximate the dependency between two intractable discrete distributions accessible via a finite sample of coupled data points. Our framework is based on the concept of a Markov bridge, a Markov process pinned at its endpoints. Unlike diffusion-based methods, our Markov Bridge Model does not need a tractable noise distribution as a sampling proxy and directly operates on the input product molecules as samples from the intractable prior distribution. We then address the retrosynthesis planning problem with our novel framework and introduce RetroBridge, a template-free retrosynthesis modeling approach that achieves state-of-the-art results on standard evaluation benchmarks.
A Quadratic Synchronization Rule for Distributed Deep Learning
Xinran Gu · Kaifeng Lyu · Sanjeev Arora · Jingzhao Zhang · Longbo Huang
In distributed deep learning with data parallelism, synchronizing gradients at each training step can cause a huge communication overhead, especially when many nodes work together to train large models. Local gradient methods, such as Local SGD, address this issue by allowing workers to compute locally for $H$ steps without synchronizing with others, hence reducing communication frequency. While $H$ has been viewed as a hyperparameter to trade optimization efficiency for communication cost, recent research indicates that setting a proper $H$ value can lead to generalization improvement. Yet, selecting a proper $H$ is elusive. This work proposes a theory-grounded method for determining $H$, named the Quadratic Synchronization Rule (QSR), which recommends dynamically setting $H$ in proportion to $\frac{1}{\eta^2}$ as the learning rate $\eta$ decays over time. Extensive ImageNet experiments on ResNet and ViT show that local gradient methods with QSR consistently improve the test accuracy over other synchronization strategies. Compared to the standard data parallel training, QSR enables Local AdamW to cut the training time on 16 or 64 GPUs down from 26.7 to 20.2 hours or from 8.6 to 5.5 hours and, at the same time, achieves 1.16% or 0.84% higher top-1 validation accuracy.
Learning to solve Class-Constrained Bin Packing Problems via Encoder-Decoder Model
Hanni Cheng · Ya Cong · Weihao Jiang · Shiliang Pu
Neural methods have shown significant merit in solving combinatorial optimization (CO) problems, including the Bin Packing Problem (BPP). However, most existing ML-based approaches focus on geometric BPP like 3DBPP, neglecting complex vector BPP. In this study, we introduce a vector BPP variant called Class-Constrained Bin Packing Problem (CCBPP), dealing with items of both classes and sizes, and the objective is to pack the items in the least amount of bins respecting the bin capacity and the number of different classes that it can hold. To enhance the efficiency and practicality of solving CCBPP, we propose a learning-based Encoder-Decoder Model. The Encoder employs a Graph Convolution Network (GCN) to generate a heat-map, representing probabilities of different items packing together. The Decoder decodes and fine-tunes the solution through Cluster Decode and Active Search methods, thereby producing high-quality solutions for CCBPP instances. Extensive experiments demonstrate that our proposed method consistently yields high-quality solutions for various kinds of CCBPP with a very small gap from the optimal. Moreover, our Encoder-Decoder Model also shows promising performance on one practical application of CCBPP, the \emph{Manufacturing Order Consolidation Problem} (OCP).
Instructive Decoding: Instruction-Tuned Large Language Models are Self-Refiner from Noisy Instructions
Taehyeon Kim · JOONKEE KIM · Gihun Lee · Se-Young Yun
While instruction-tuned language models have demonstrated impressive zero-shot generalization, these models often struggle to generate accurate responses when faced with instructions that fall outside their training set. This paper presents Instructive Decoding (ID), a simple yet effective approach that augments the efficacy of instruction-tuned models. Specifically, ID adjusts the logits for next-token prediction in a contrastive manner, utilizing predictions generated from a manipulated version of the original instruction, referred to as a noisy instruction. This noisy instruction aims to elicit responses that could diverge from the intended instruction yet remain plausible. We conduct experiments across a spectrum of such noisy instructions, ranging from those that insert semantic noise via random words to others like 'opposite' that elicit the deviated responses. Our approach achieves considerable performance gains across various instruction-tuned models and tasks without necessitating any additional parameter updates. Notably, utilizing 'opposite' as the noisy instruction in ID, which shows the maximum divergence from the original instruction, consistently produces the most significant performance gains across multiple models and tasks.
Lagrangian Flow Networks for Conservation Laws
Fabricio Arend Torres · Marcello Negri · Marco Inversi · Jonathan Aellen · Volker Roth
We introduce Lagrangian Flow Networks (LFlows) for modeling fluid densities and velocities continuously in space and time.By construction, the proposed LFlows satisfy the continuity equation,a PDE describing mass conservation in its differentiable form. Our model is based on the insight that solutions to the continuity equation can be expressed astime-dependent density transformations via differentiable and invertible maps.This follows from classical theory of the existence and uniqueness of Lagrangian flows for smooth vector fields.Hence, we model fluid densities by transforming a base density with parameterized diffeomorphisms conditioned on time.The key benefit compared to methods relying on numerical ODE solvers or PINNs is that the analytic expression of the velocity is always consistent with changes in density.Furthermore, we require neither expensive numerical solvers, nor additional penalties to enforce the PDE.LFlows show higher predictive accuracy in density modeling tasks compared to competing models in 2D and 3D,while being computationally efficient.As a real-world application, we model bird migration based on sparse weather radar measurements.
From Latent Graph to Latent Topology Inference: Differentiable Cell Complex Module
Claudio Battiloro · Indro Spinelli · Lev Telyatinkov · Michael Bronstein · Simone Scardapane · Paolo Di Lorenzo
Latent Graph Inference (LGI) relaxed the reliance of Graph Neural Networks (GNNs) on a given graph topology by dynamically learning it. However, most of LGI methods assume to have a (noisy, incomplete, improvable, ...) input graph to rewire and can solely learn regular graph topologies. In the wake of the success of Topological Deep Learning (TDL), we study Latent Topology Inference (LTI) for learning higher-order cell complexes (with sparse and not regular topology) describing multi-way interactions between data points. To this aim, we introduce the Differentiable Cell Complex Module (DCM), a novel learnable function that computes cell probabilities in the complex to improve the downstream task. We show how to integrate DCM with cell complex message-passing networks layers and train it in an end-to-end fashion, thanks to a two-step inference procedure that avoids an exhaustive search across all possible cells in the input, thus maintaining scalability. Our model is tested on several homophilic and heterophilic graph datasets and it is shown to outperform other state-of-the-art techniques, offering significant improvements especially in cases where an input graph is not provided.
MetaTool Benchmark: Deciding Whether to Use Tools and Which to Use
Yue Huang · Jiawen Shi · Yuan Li · Chenrui Fan · Siyuan Wu · Qihui Zhang · Yixin Liu · Pan Zhou · Yao Wan · Neil Gong · Lichao Sun
Large language models (LLMs) have garnered significant attention due to their impressive natural language processing (NLP) capabilities. Recently, many studies have focused on the tool utilization ability of LLMs. They primarily investigated how LLMs effectively collaborate with given specific tools. However, in scenarios where LLMs serve as intelligent agents, as seen in applications like AutoGPT and MetaGPT, LLMs are expected to engage in intricate decision-making processes that involve deciding whether to employ a tool and selecting the most suitable tool(s) from a collection of available tools to fulfill user requests. Therefore, in this paper, we introduce MetaTool, a benchmark designed to evaluate whether LLMs have tool usage awareness and can correctly choose tools. Specifically, we create a dataset called ToolE within the benchmark. This dataset contains various types of user queries in the form of prompts that trigger LLMs to use tools, including both single-tool and multi-tool scenarios. Subsequently, we set the tasks for both tool usage awareness and tool selection. We define four subtasks from different perspectives in tool selection, including tool selection with similar choices, tool selection in specific scenarios, tool selection with possible reliability issues, and multi-tool selection. We conduct experiments involving nine popular LLMs and find that the majority of them still struggle to effectively select tools, highlighting the existing gaps between LLMs and genuine intelligent agents. However, through the error analysis, we found there is still significant room for improvement. Finally, we conclude with insights for tool developers that follow ChatGPT to provide detailed descriptions that can enhance the tool selection performance of LLMs.
FedInverse: Evaluating Privacy Leakage in Federated Learning
DI WU · Jun Bai · Yiliao Song · Junjun Chen · Wei Zhou · Yong Xiang · Atul Sajjanhar
Federated Learning (FL) is a distributed machine learning technique where multiple devices (such as smartphones or IoT devices) train a shared global model by using their local data. FL claims that the data privacy of local participants is preserved well because local data will not be shared with either the server-side or other training participants. However, this paper discovers a pioneering finding that a model inversion (MI) attacker, who acts as a benign participant, can invert the shared global model and obtain the data belonging to other participants. This will lead to severe data-leakage risk in FL because it is difficult to identify attackers from benign participants.In addition, we found even the most advanced defense approaches could not effectively address this issue. Therefore, it is important to evaluate such data-leakage risks of an FL system before using it. To alleviate this issue, we propose FedInverse to evaluate whether the FL global model can be inverted by MI attackers. In particular, FedInverse can be optimized by leveraging the Hilbert-Schmidt independence criterion (HSIC) as a regularizer to adjust the diversity of the MI attack generator. We test FedInverse with three typical MI attackers, GMI, KED-MI, and VMI, and the experiments show our FedInverse method can successfully obtain the data belonging to other participants.
Towards Cross Domain Generalization of Hamiltonian Representation via Meta Learning
Yeongwoo Song · Hawoong Jeong
Recent advancements in deep learning for physics have focused on discovering shared representations of target systems by incorporating physics priors or inductive biases into neural networks. While effective, these methods are confined to the system domain in which the type of system remains consistent and thus cannot ensure the adaptation to new, or unseen physical systems governed by different laws. For example, a neural network trained on a mass-spring system cannot guarantee the accurate prediction of the behavior of a two-body system or any other system with different physical laws. In this work, we take a significant leap forward by targeting cross domain generalization within the field of Hamiltonian dynamics. We model our system with a graph neural network and employ a meta learning algorithm to enable the model to gain experience over a distribution of tasks and make it adapt to new physics. Our approach aims to learn a unified Hamiltonian representation that is generalizable across multiple system domains, thereby overcoming the limitations of system-specific models. We validate our approach on a dataset comprising various physical systems and evaluate its adaptability to a new type of dynamical system with previously unseen physics. Our results demonstrate that the meta trained model not only adapts effectively to new systems but also captures a generalized Hamiltonian representation that is consistent across different physical domains.Overall, through the use of meta learning, we offer a framework that achieves cross domain generalization, providing a step towards a unified model for understanding a wide array of dynamical systems via deep learning.
Calibrated Chaos: Variance Between Runs of Neural Network Training is Harmless and Inevitable
Keller Jordan
Typical neural network trainings have substantial variance in test-set performance between repeated runs, impeding hyperparameter comparison and training reproducibility. We present the following results towards understanding this variation.(1) Despite having significant variance on their test-sets, we demonstrate that standard CIFAR-10 and ImageNet trainings have very little variance in their performance on the test-distributions from which their test-sets are sampled, suggesting that variance is less of a practical issue than previously thought.(2) We present a simplifying statistical assumption which closely approximates the structure of the test-set accuracy distribution.(3) We prove that test-set variance is unavoidable given the observation that ensembles of independently trained networks are well-calibrated.(4) We conduct preliminary studies of distribution-shift, fine-tuning, data augmentation and learning rate through the lens of variance between runs.
OpenWebMath: An Open Dataset of High-Quality Mathematical Web Text
Keiran Paster · Marco Dos Santos · Zhangir Azerbayev · Jimmy Ba
There is growing evidence that pretraining on high quality, carefully thought-out tokens such as code or mathematics plays an important role in improving the reasoning abilities of large language models. For example, Minerva, a PaLM model finetuned on billions of tokens of mathematical documents from arXiv and the web, reported dramatically improved performance on problems that require quantitative reasoning. However, because all known open source web datasets employ preprocessing that does not faithfully preserve mathematical notation, the benefits of large scale training on quantitive web documents are unavailable to the research community. We introduce OpenWebMath, an open dataset inspired by these works containing 14.7B tokens of mathematical webpages from Common Crawl. We describe in detail our method for extracting text and LaTeX content and removing boilerplate from HTML documents, as well as our methods for quality filtering and deduplication. Additionally, we run small-scale experiments by training 1.4B language models on OpenWebMath, showing that models trained on 14.7B tokens of our dataset surpass the performance of models trained on over 20x the amount of general language data. We hope that our dataset, open-sourced and released on the Hugging Face Hub, will help spur advances in the reasoning abilities of large language models.
SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents
Xuhui Zhou · Hao Zhu · Leena Mathur · Ruohong Zhang · Haofei Yu · Zhengyang Qi · Louis-Philippe Morency · Yonatan Bisk · Daniel Fried · Graham Neubig · Maarten Sap
Humans are social beings; we pursue social goals in our daily interactions, which is a crucial aspect of social intelligence. Yet, AI systems' abilities in this realm remain elusive. We present SOTOPIA, an open-ended environment to simulate complex social interactions between artificial agents and evaluate their social intelligence. In our environment, agents role-play and interact under a wide variety of scenarios; they coordinate, collaborate, exchange, and compete with each other to achieve complex social goals. We simulate the role-play interaction between LLM-based agents and humans within this task space and evaluate their performance with a holistic evaluation framework called SOTOPIA-Eval. With SOTOPIA, we find significant differences between these models in terms of their social intelligence, and we identify a subset of SOTOPIA scenarios, SOTOPIA-hard, that is generally challenging for all models. We find that on this subset, GPT-4 achieves a significantly lower goal completion rate than humans and struggles to exhibit social commonsense reasoning and strategic communication skills. These findings demonstrate SOTOPIA's promise as a general platform for research on evaluating and improving social intelligence in artificial agents.
Zero and Few-shot Semantic Parsing with Ambiguous Inputs
Elias Stengel-Eskin · Kyle Rawlins · Benjamin Van Durme
Despite the frequent challenges posed by ambiguity when representing meaning via natural language, it is often ignored or deliberately removed in tasks mapping language to formally-designed representations, which generally assume a one-to-one mapping between linguistic and formal representations. We attempt to address this shortcoming by introducing AmP, a framework, dataset, and challenge for translating ambiguous natural language to formal representations like logic and code. We define templates and generate data for five well-documented linguistic ambiguities.Using AmP, we investigate how several few-shot text-to-code systems handle ambiguity, introducing three new metrics.We find that large pre-trained models perform poorly at capturing the distribution of possible meanings without deliberate instruction.However, models are able to capture the distribution well when ambiguity is attested in their inputs. These results motivate a call for including ambiguity explicitly in datasets and promote considering the distribution of possible outputs when evaluating systems. We release our data and code.
Language Model Detectors Are Easily Optimized Against
Charlotte Nicks · Eric Mitchell · Rafael Rafailov · Archit Sharma · Christopher Manning · Chelsea Finn · Stefano Ermon
The fluency and general applicability of large language models (LLMs) has motivated significant interest in detecting whether a piece of text was written by a language model. While both academic and commercial detectors have been deployed in some settings, particularly education, other research has highlighted the fragility of these systems. In this paper, we demonstrate a data-efficient attack that fine-tunes language models to confuse existing detectors, leveraging recent developments in reinforcement learning of language models. We use the 'human-ness' score (often just a log probability) of various open-source and commercial detectors as a reward function for reinforcement learning, subject to a KL-divergence constraint that the resulting model does not differ significantly from the original. For a 7B parameter Llama-2 model, fine-tuning for under a day reduces the AUROC of the OpenAI RoBERTa-Large detector from 0.84 to 0.62, while perplexity on OpenWebText increases from 8.7 to only 9.0; with a larger perplexity budget, we reduce AUROC to 0.30 (worse than random), with a perplexity increase to 9.9. Similar to traditional adversarial attacks, we find that this increase in 'detector evasion' generalizes to other detectors not used during training. In light of our empirical results, we advise against continued reliance on LLM-generated text detectors.
Magic123: One Image to High-Quality 3D Object Generation Using Both 2D and 3D Diffusion Priors
Guocheng Qian · Jinjie Mai · Abdullah Hamdi · Jian Ren · Aliaksandr Siarohin · Bing Li · Hsin-Ying Lee · Ivan Skorokhodov · Peter Wonka · Sergey Tulyakov · Bernard Ghanem
We present ``Magic123'', a two-stage coarse-to-fine approach for high-quality, textured 3D mesh generation from a single image in the wild using both 2D and 3D priors. In the first stage, we optimize a neural radiance field to produce a coarse geometry. In the second stage, we adopt a memory-efficient differentiable mesh representation to yield a high-resolution mesh with a visually appealing texture. In both stages, the 3D content is learned through reference-view supervision and novel-view guidance by a joint 2D and 3D diffusion prior. We introduce a trade-off parameter between the 2D and 3D priors to control the details and 3D consistencies of the generation. Magic123 demonstrates a significant improvement over previous image-to-3D techniques, as validated through extensive experiments on diverse synthetic and real-world images.
Adversarial Adaptive Sampling: Unify PINN and Optimal Transport for the Approximation of PDEs
Kejun Tang · Jiayu Zhai · Xiaoliang Wan · Chao Yang
Solving partial differential equations (PDEs) is a central task in scientific computing. Recently, neural network approximation of PDEs has received increasing attention due to its flexible meshless discretization and its potential for high-dimensional problems. One fundamental numerical difficulty is that random samples in the training set introduce statistical errors into the discretization of the loss functional which may become the dominant error in the final approximation, and therefore overshadow the modeling capability of the neural network. In this work, we propose a new minmax formulation to optimize simultaneously the approximate solution, given by a neural network model, and the random samples in the training set, provided by a deep generative model. The key idea is to use a deep generative model to adjust the random samples in the training set such that the residual induced by the neural network model can maintain a smooth profile in the training process. Such an idea is achieved by implicitly embedding the Wasserstein distance between the residual-induced distribution and the uniform distribution into the loss, which is then minimized together with the residual. A nearly uniform residual profile means that its variance is small for any normalized weight function such that the Monte Carlo approximation error of the loss functional is reduced significantly for a certain sample size. The adversarial adaptive sampling (AAS) approach proposed in this work is the first attempt to formulate two essential components, minimizing the residual and seeking the optimal training set, into one minmax objective functional for the neural network approximation of PDEs.
Escape Sky-high Cost: Early-stopping Self-Consistency for Multi-step Reasoning
Yiwei Li · Peiwen Yuan · Shaoxiong Feng · Boyuan Pan · Xinglin Wang · Bin Sun · Heda Wang · Kan Li
Self-consistency (SC) has been a widely used decoding strategy for chain-of-thought reasoning. Despite bringing significant performance improvements across a variety of multi-step reasoning tasks, it is a high-cost method that requires multiple sampling with the preset size. In this paper, we propose a simple and scalable sampling process, Early-Stopping Self-Consistency (ESC), to greatly reduce the cost of SC without sacrificing performance. On this basis, one control scheme for ESC is further derivated to dynamically choose the performance-cost balance for different tasks and models. To demonstrate ESC's effectiveness, we conducted extensive experiments on three popular categories of reasoning tasks: arithmetic, commonsense and symbolic reasoning over language models with varying scales. The empirical results show that ESC reduces the average number of sampling of chain-of-thought reasoning by a significant margin on six benchmarks, including MATH (-33.8%), GSM8K (-80.1%), StrategyQA (-76.8%), CommonsenseQA (-78.5%), Coin Flip (-84.2%) and Last Letters (-67.4%), while attaining comparable performances.
CLAP: Collaborative Adaptation for Checkerboard Learning
Sen Cui · Abudukelimu Wuerkaixi · Weishen Pan · Jian Liang · Lei Fang · Changshui Zhang · Fei Wang
In this paper, we investigate a new practical learning scenario, where the data distributed in different sources/clients are typically generated with various modalities. Existing research on learning from multi-source data mostly assume that each client owns the data of all modalities, which may largely limit its practicability. In light of the expensiveness and sparsity of multimodal data, we propose "checkerboard learning" to jointly learn from fragmented multimodal data in distributed clients. Considering the concerns on data privacy, checkerboard learning aims to impute incomplete multimodal data for diverse downstream tasks without accessing the raw data directly. Local clients could miss different modality combinations. Due to the statistical heterogeneity induced by non-i.i.d. data, the imputation is more challenging since the learned dependencies fail to adapt to the imputation of other clients. In this paper, we provide a novel imputation framework to tackle modality combination heterogeneity and statistical heterogeneity simultaneously, called ``collaborative adaptation''. In particular, for two observed modality combinations from two clients, we learn the transformations between their maximal intersection and other modalities by proposing a novel ELBO. We improve the worst-performing required transformations through a Pareto min-max framework. In extensive experiments, we demonstrate the superiority of the proposed method compared to existing related methods on benchmark data sets and a real-world clinical data set.
Scalable Diffusion for Materials Generation
Sherry Yang · Kwanghwan Cho · Amil Merchant · Pieter Abbeel · Dale Schuurmans · Igor Mordatch · Ekin Cubuk
Generative models trained on internet-scale data are capable of generating novel and realistic texts, images, and videos. A natural next question is whether these models can advance science, for example by generating novel stable materials. Traditionally, models with explicit structures (e.g., graphs) have been used in modeling structural relationships in scientific data (e.g., atoms and bonds in crystals), but generating structures can be difficult to scale to large and complex systems. Another challenge in generating materials is the mismatch between standard generative modeling metrics and downstream applications. For instance, common metrics such as the reconstruction error do not correlate well with the downstream goal of discovering novel stable materials. In this work, we tackle the scalability challenge by developing a unified crystal representation that can represent any crystal structure (UniMat), followed by training a diffusion probabilistic model on these UniMat representations. Our empirical results suggest that despite the lack of explicit structure modeling, UniMat can generate high fidelity crystal structures from larger and more complex chemical systems, outperforming previous graph-based approaches under various generative modeling metrics. To better connect the generation quality of materials to downstream applications, such as discovering novel stable materials, we propose additional metrics for evaluating generative models of materials, including per-composition formation energy and stability with respect to convex hulls through decomposition energy from Density Function Theory (DFT). Lastly, we show that conditional generation with UniMat can scale to previously established crystal datasets with up to millions of crystals structures, outperforming random structure search (the current leading method for structure discovery) in discovering new stable materials.
Function Vectors in Large Language Models
Eric Todd · Millicent Li · Arnab Sen Sharma · Aaron Mueller · Byron Wallace · David Bau
We report the presence of a simple neural mechanism that represents an input-output function as a vector within autoregressive transformer language models (LMs). Using causal mediation analysis on a diverse range of in-context-learning (ICL) tasks, we find that a small number attention heads transport a compact representation of the demonstrated task, which we call a function vector (FV). FVs are robust to changes in context, i.e., they trigger execution of the task on inputs such as zero-shot and natural text settings that do not resemble the ICL contexts from which they are collected. We test FVs across a range of tasks, models, and layers and find strong causal effects across settings in middle layers. We investigate the internal structure of FVs and find while that they often contain information that encodes the output space of the function, this information alone is not sufficient to reconstruct an FV. Finally, we test semantic vector composition in FVs, and find that to some extent they can be summed to create vectors that trigger new complex tasks. Our findings show that compact, causal internal vector representations of function abstractions can be explicitly extracted from LLMs.
Emerging Pixel-level Semantic Knowledge in Diffusion Models
Koichi Namekata · Amirmojtaba Sabour · Sanja Fidler · Seung Wook Kim
Diffusion models have recently received increasing research attention for their impressive transfer abilities to semantic segmentation tasks. However, previous works rely on additional supervision to produce fine-grained segmentation maps, leaving it unclear how much diffusion models alone understand the semantic relations of their generated images. To help answer this question, we exploit the semantic knowledge extracted from Stable Diffusion (SD) and build an image segmentor that can generate fine-grained segmentation maps without any additional training. The major issue that makes this task challenging for previous works is that semantically meaningful feature maps usually exist only in the spatially lower-dimensional layers, which makes it infeasible to extract pixel-level semantic relations directly from the feature maps. To overcome this challenge, our framework identifies semantic correspondences between image pixels and spatial locations of low-dimensional feature maps by analyzing SD’s generation process and utilizes them to construct image-resolution segmentation maps. In extensive experiments, the produced segmentation maps are shown to be well delineated and capture detailed parts of the images, indicating the existence of highly accurate pixel-level semantic knowledge in the diffusion models
Querying Easily Flip-flopped Samples for Deep Active Learning
Seong Jin Cho · Gwangsu Kim · Junghyun Lee · Jinwoo Shin · Chang Yoo
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data. One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is. The sample's distance to the decision boundary is a natural measure of predictive uncertainty, but it is often intractable to compute, especially for complex decision boundaries formed in multiclass classification tasks.To address this issue, this paper proposes the least disagree metric (LDM), defined as the smallest probability of disagreement of the predicted label, and an estimator for LDM proven to be asymptotically consistent under mild assumptions. The estimator is computationally efficient and can be easily implemented for deep learning models using parameter perturbation. The LDM-based active learning is performed by querying unlabeled data with the smallest LDM. Experimental results show that our LDM-based active learning algorithm obtains state-of-the-art overall performance on all considered datasets and deep architectures.
NuwaDynamics: Discovering and Updating in Causal Spatio-Temporal Modeling
Kun Wang · Hao Wu · Yifan Duan · Guibin Zhang · Kai Wang · Xiaojiang Peng · yu zheng · Yuxuan Liang · Yang Wang
Spatio-temporal (ST) prediction plays a pivotal role in earth sciences, such as meteorological prediction, urban computing. Adequate high-quality data, coupled with deep models capable of inference, are both indispensable and prerequisite for achieving meaningful results. However, the sparsity of data and the high costs associated with deploying sensors lead to significant data imbalances. Models that are overly tailored and lack causal relationships further compromise the generalizabilities of inference methods. Towards this end, we first establish a causal concept for ST predictions, named NuwaDynamics, which targets to identify causal regions in data and endow model with causal reasoning ability in a two-stage process. Concretely, we initially leverage upstream self-supervision to discern causal important patches, imbuing the model with generalized information and conducting informed interventions on complementary trivial patches to extrapolate potential test distributions. This phase is referred to as the discovery step. Advancing beyond discovery step, we transfer the data to downstream tasks for targeted ST objectives, aiding the model in recognizing a broader potential distribution and fostering its causal perceptual capabilities (refer as Update step). Our concept aligns seamlessly with the contemporary backdoor adjustment mechanism in causality theory. Extensive experiments on six real-world ST benchmarks showcase that models can gain outcomes upon the integration of the NuwaDynamics concept. NuwaDynamics also can significantly benefit a wide range of changeable ST tasks like extreme weather and long temporal step super-resolution predictions.
A Poincaré Inequality and Consistency Results for Signal Sampling on Large Graphs
Thien Le · Luana Ruiz · Stefanie Jegelka
Large-scale graph machine learning is challenging as the complexity of learning models scales with the graph size. Subsampling the graph is a viable alternative, but sampling on graphs is nontrivial as graphs are non-Euclidean. Existing graph sampling techniques require not only computing the spectra of large matrices but also repeating these computations when the graph changes, e.g., grows. In this paper, we introduce a signal sampling theory for a type of graph limit---the graphon. We prove a Poincaré inequality for graphon signals and show that complements of node subsets satisfying this inequality are unique sampling sets for Paley-Wiener spaces of graphon signals. Exploiting connections with spectral clustering and Gaussian elimination, we prove that such sampling sets are consistent in the sense that unique sampling sets on a convergent graph sequence converge to unique sampling sets on the graphon. We then propose a related graphon signal sampling algorithm for large graphs, and demonstrate its good empirical performance on graph machine learning tasks.
Unpaired Image-to-Image Translation via Neural Schrödinger Bridge
Beomsu Kim · Gihyun Kwon · Kwanyoung Kim · Jong Ye
Diffusion models are a powerful class of generative models which simulate stochastic differential equations (SDEs) to generate data from noise. Although diffusion models have achieved remarkable progress in recent years, they have limitations in the unpaired image-to-image translation tasks due to the Gaussian prior assumption. Schrödinger Bridge (SB), which learns an SDE to translate between two arbitrary distributions, have risen as an attractive solution to this problem. However, none of SB models so far have been successful at unpaired translation between high-resolution images. In this work, we propose the Unpaired Neural Schrödinger Bridge (UNSB), which expresses SB problem as a sequence of adversarial learning problems. This allows us to incorporate advanced discriminators and regularization to learn a SB between unpaired data. We demonstrate that UNSB is scalable and successfully solves various unpaired image-to-image translation tasks.
RA-DIT: Retrieval-Augmented Dual Instruction Tuning
Xi Lin · Xilun Chen · Mingda Chen · Weijia Shi · Maria Lomeli · Richard James · Pedro Rodriguez · Jacob D Kahn · Gergely Szilvasy · Mike Lewis · Luke Zettlemoyer · Scott Yih
Retrieval-augmented language models (RALMs) improve performance by accessing long-tail and up-to-date knowledge from external data stores, but are challenging to build. Existing approaches require either expensive retrieval-specific modifications to LM pre-training or use post-hoc integration of the data store that leads to suboptimal performance. We introduce Retrieval-Augmented Dual Instruction Tuning (RA-DIT), a lightweight fine-tuning methodology that provides a third option by retrofitting any LLM with retrieval capabilities. Our approach operates in two distinct fine-tuning steps: (1) one updates a pre-trained LM to better use retrieved information, while (2) the other updates the retriever to return more relevant results, as preferred by the LM. By fine-tuning over tasks that require both knowledge utilization and contextual awareness, we demonstrate that each stage yields significant performance improvements, and using both leads to additional gains. Our best model, RA-DIT 65B, achieves state-of-the-art performance across a range of knowledge-intensive zero- and few-shot learning benchmarks, significantly outperforming existing in-context RALM approaches by up to +8.9% in 0-shot setting and +1.4% in 5-shot setting on average.
Scaling Laws of RoPE-based Extrapolation
Xiaoran Liu · Hang Yan · Chenxin An · Xipeng Qiu · Dahua Lin
The extrapolation capability of Large Language Models (LLMs) based on Rotary Position Embedding \cite{su2021roformer} is currently a topic of considerable interest. The mainstream approach to addressing extrapolation with LLMs involves modifying RoPE by replacing 10000, the rotary base of $\theta_n={10000}^{-2n/d}$ in the original RoPE, with a larger value and providing longer fine-tuning text. In this work, we first observe that fine-tuning a RoPE-based LLM with either a smaller or larger base in pre-training context length could significantly enhance its extrapolation performance. After that, we propose \textbf{\textit{Scaling Laws of RoPE-based Extrapolation}}, a unified framework from the periodic perspective, to describe the relationship between the extrapolation performance and base value as well as tuning context length. In this process, we also explain the origin of the RoPE-based extrapolation issue by \textbf{\textit{critical dimension for extrapolation}}. Besides these observations and analyses, we achieve extrapolation up to 1 million context length within only 16K training length on LLaMA2 7B and 13B \citep{touvron2023llama2}.
MOTOR: A Time-To-Event Foundation Model For Structured Medical Records
Ethan Steinberg · Yizhe Xu · Jason Fries · Nigam Shah
We present a self-supervised, time-to-event (TTE) foundation model called MOTOR (Many Outcome Time Oriented Representations) which is pretrained on timestamped sequences of events in electronic health records (EHR) and health insurance claims. TTE models are used for estimating the probability distribution of the time until a specific event occurs, which is an important task in medical settings. TTE models provide many advantages over classification using fixed time horizons, including naturally handling censored observations, but are challenging to train with limited labeled data. MOTOR addresses this challenge by pretraining on up to 55M patient records (9B clinical events). We evaluate MOTOR's transfer learning performance on 19 tasks, across 3 patient databases (a private EHR system, MIMIC-IV, and Merative claims data). Task-specific models adapted from MOTOR improve time-dependent C statistics by 4.6\% over state-of-the-art, improve label efficiency by up to 95\% ,and are more robust to temporal distributional shifts. We further evaluate cross-site portability by adapting our MOTOR foundation model for six prediction tasks on the MIMIC-IV dataset, where it outperforms all baselines. MOTOR is the first foundation model for medical TTE predictions and we release a 143M parameter pretrained model for research use at [redacted URL].
Conformal Language Modeling
Victor Quach · Adam Fisch · Tal Schuster · Adam Yala · Jae Ho Sohn · Tommi Jaakkola · Regina Barzilay
In this paper, we propose a novel approach to conformal prediction for language models (LMs) in which we produce prediction sets with performance guarantees. LM responses are typically sampled from a predicted distribution over the large, combinatorial output space of language. Translating this to conformal prediction, we calibrate a stopping rule for sampling LM outputs that get added to a growing set of candidates until we are confident that the set covers at least one acceptable response. Since some samples may be low-quality, we also simultaneously calibrate a rejection rule for removing candidates from the output set to reduce noise. Similar to conformal prediction, we can prove that the final output set obeys certain desirable distribution-free guarantees. Within these sets of candidate responses, we also show that we can also identify subsets of individual components---such as phrases or sentences---that are each independently correct (e.g., that are not ``hallucinations''), again with guarantees. Our method can be applied to any LM API that supports sampling. Furthermore, we empirically demonstrate that we can achieve many desired coverage levels within a limited number of total samples when applying our method to multiple tasks in open-domain question answering, text summarization, and radiology report generation using different LM variants.
Local Search GFlowNets
Minsu Kim · Yun Taeyoung · Emmanuel Bengio · Dinghuai Zhang · Yoshua Bengio · Sungsoo Ahn · Jinkyoo Park
Generative Flow Networks (GFlowNets) are amortized sampling methods that learn a distribution over discrete objects proportional to their rewards. GFlowNets exhibit a remarkable ability to generate diverse samples, yet occasionally struggle to consistently produce samples with high rewards due to over-exploration on wide sample space. This paper proposes to train GFlowNets with local search which focuses on exploiting high rewarded sample space to resolve this issue. Our main idea is to explore the local neighborhood via destruction and reconstruction guided by backward and forward policies, respectively. This allows biasing the samples toward high-reward solutions, which is not possible for a typical GFlowNet solution generation scheme which uses the forward policy to generate the solution from scratch. Extensive experiments demonstrate a remarkable performance improvement in several biochemical tasks. Source code is available: \url{https://anonymous.4open.science/r/ls-gfn-FC9A/README.md}.
Tree Search-Based Policy Optimization under Stochastic Execution Delay
David Valensi · Esther Derman · Shie Mannor · Gal Dalal
The conventional formulation of Markov decision processes (MDPs) assumes that the agent's decisions are promptly executed.However, in numerous realistic applications such as robotics or healthcare, actions are performed with a delay which value can even be stochastic.In this work, we introduce stochastic delayed execution MDPs, a new formalism addressing random delays without resorting to state augmentation. We show that given observed delay values, it is sufficient to perform a policy search in the class of Markov policies in order to reach optimal performance, thus extending the deterministic fixed delay case. Armed with this insight, we devise Delayed EfficientZero, a model-based algorithm that optimizes over the class of Markov policies. Delayed EfficientZero leverages the Monte-Carlo tree search of its non-delayed variant EfficientZero to accurately infer future states from the action queue. Thus, it handles delayed execution while preserving the sample efficiency of EfficientZero. Through empirical analysis, we demonstrate that our algorithm surpasses all benchmark methods in Atari games when dealing with both constant and stochastic delays.
Simplicial Representation Learning with Neural $k$-Forms
Kelly Maggs · Celia Hacker · Bastian Rieck
\emph{Geometric deep learning} extends deep learning to incorporate information about the geometry and topology data, especially in complex domains like graphs. Despite the popularity of message passing in this field, it has limitations such as the need for graph rewiring, ambiguity in interpreting data, and over-smoothing. In this paper, we take a different approach, focusing on leveraging geometric information from simplicial complexes embedded in $\mathbb{R}^n$ using node coordinates. We use differential $k$-forms in $\mathbb{R}^n$ to create representations of simplices, offering interpretability and geometric consistency without message passing. This approach also enables us to apply differential geometry tools and achieve universal approximation. Our method is efficient, versatile, and applicable to various input complexes, including graphs, simplicial complexes, and cell complexes. It outperforms existing message passing neural networks in harnessing information from geometrical graphs with node features serving as coordinates.
Beyond Worst-case Attacks: Robust RL with Adaptive Defense via Non-dominated Policies
Xiangyu Liu · Chenghao Deng · Yanchao Sun · Yongyuan Liang · Furong Huang
In light of the burgeoning success of reinforcement learning (RL) in diverse real-world applications, considerable focus has been directed towards ensuring RL policies are robust to adversarial attacks during test time. Current approaches largely revolve around solving a minimax problem to prepare for potential worst-case scenarios. While effective against strong attacks, these methods often compromise performance in the absence of attacks or the presence of only weak attacks. To address this, we study policy robustness under the well-accepted state-adversarial attack model, extending our focus beyond merely worst-case attacks. We first formalize this task at test time as a regret minimization problem and establish its intrinsic difficulty in achieving sublinear regret when the baseline policy is from a general continuous policy class, $\Pi$. This finding prompts us to \textit{refine} the baseline policy class $\Pi$ prior to test time, aiming for efficient adaptation within a compact, finite policy class $\tilde{\Pi}$, which can resort to an adversarial bandit subroutine. In light of the importance of a finite and compact $\tilde{\Pi}$, we propose a novel training-time algorithm to iteratively discover \textit{non-dominated policies}, forming a near-optimal and minimal $\tilde{\Pi}$, thereby ensuring both robustness and test-time efficiency. Empirical validation on the Mujoco corroborates the superiority of our approach in terms of natural and robust performance, as well as adaptability to various attack scenarios.
Differentiable Learning of Generalized Structured Matrices for Efficient Deep Neural Networks
Changwoo Lee · Hun-Seok Kim
This paper investigates efficient deep neural networks (DNNs) to replace dense unstructured weight matrices with structured ones that possess desired properties. The challenge arises because the optimal weight matrix structure in popular neural network models is obscure in most cases and may vary from layer to layer even in the same network. Prior structured matrices proposed for efficient DNNs were mostly hand-crafted without a generalized framework to systematically learn them. To address this issue, we propose a generalized and differentiable framework to learn efficient structures of weight matrices by gradient descent. We first define a new class of structured matrices that covers a wide range of structured matrices in the literature by adjusting the structural parameters. Then, the frequency-domain differentiable parameterization scheme based on the Gaussian-Dirichlet kernel is adopted to learn the structural parameters by proximal gradient descent. Finally, we introduce an effective initialization method for the proposed scheme. Our method learns efficient DNNs with structured matrices, achieving lower complexity and/or higher performance than prior approaches that employ low-rank, block-sparse, or block-low-rank matrices.
DreamTime: An Improved Optimization Strategy for Diffusion-Guided 3D Generation
Yukun Huang · Jianan Wang · Yukai Shi · Boshi Tang · Xianbiao Qi · Lei Zhang
Text-to-image diffusion models pre-trained on billions of image-text pairs have recently enabled 3D content creation by optimizing a randomly initialized differentiable 3D representation with score distillation. However, the optimization process suffers slow convergence and the resultant 3D models often exhibit two limitations: (a) quality concerns such as missing attributes and distorted shape and textures; (b) extremely low diversity comparing to text-guided image synthesis. In this paper, we show that the conflict between the 3D optimization process and uniform timestep sampling in score distillation is the main reason for these limitations. To resolve this conflict, we propose to prioritize timestep sampling with monotonically non-increasing functions, which aligns the 3D optimization process with the sampling process of diffusion model. Extensive experiments show that our simple redesign significantly improves 3D content creation with faster convergence, better quality and diversity.
Scale-Adaptive Diffusion Model for Complex Sketch Synthesis
Jijin Hu · Ke Li · Yonggang Qi · Yi-Zhe Song
While diffusion models have revolutionized generative AI, their application to human sketch generation, especially in the creation of complex yet concise and recognizable sketches, remains largely unexplored. Existing efforts have primarily focused on vector-based sketches, limiting their ability to handle intricate sketch data. This paper introduces an innovative extension of diffusion models to pixellevel sketch generation, addressing the challenge of dynamically optimizing the guidance scale for classifier-guided diffusion. Our approach achieves a delicate balance between recognizability and complexity in generated sketches through scale-adaptive classifier-guided diffusion models, a scaling indicator, and the concept of a residual sketch. We also propose a three-phase sampling strategy to enhance sketch diversity and quality. Experiments on the QuickDraw dataset showcase the potential of diffusion models to push the boundaries of sketch generation, particularly in complex scenarios unattainable by vector-based methods.
Towards image compression with perfect realism at ultra-low bitrates
Marlene Careil · Matthew J Muckley · Jakob Verbeek · Stéphane Lathuilière
Image codecs are typically optimized to trade-off bitrate vs. distortion metrics. At low bitrates, this leads to compression artefacts which are easily perceptible, even when training with perceptual distortion metrics or adversarial losses. To improve image quality, and to make it less dependent on the bitrate, we propose to leverage diffusion models as a decoder module, which rely on an iterative decoding process instead of feed-forward decoders trained using MSE or LPIPS distortions used in most neural codecs. In addition to conditioning the model on a vector-quantized image representation, we also condition on a global textual image description to provide additional context. We dub our model PerCo for ''perceptual compression'', and compare it to state-of-the-art codecs at bitrates from 0.1 down to 0.003 bits per pixel (bpp). The latter rate is an order of magnitude smaller than those considered in most prior work. At this bitrate a 512x768 Kodak image is encoded in just 148 bytes. Despite this ultra-low bitrate, our approach maintains the ability to reconstruct realistic images. We find that our model leads to reconstructions with state-of-the-art visual quality as measured by FID and KID, and that the visual quality is less dependent on the bitrate than previous methods. Image codecs are typically optimized to trade-off bitrate vs. distortion metrics. At low bitrates, this leads to compression artefacts which are easily perceptible, even when training with perceptual or adversarial losses. To improve image quality, and to make it less dependent on the bitrate, we propose to decode with iterative diffusion models, instead of feed-forward decoders trained using MSE or LPIPS distortions used in most neural codecs. In addition to conditioning the model on a vector-quantized image representation, we also condition on a global textual image description to provide additional context. We dub our model PerCo for ''perceptual compression'', and compare it to state-of-the-art codecs at rates from 0.1 down to 0.003 bits per pixel. The latter rate is an order of magnitude smaller than those considered in most prior work. At this bitrate a 512x768 Kodak image is encoded in less than 153 bytes. Despite this ultra-low bitrate, our approach maintains the ability to reconstruct realistic images. We find that our model leads to reconstructions with state-of-the-art visual quality as measured by FID and KID, and that the visual quality is less dependent on the bitrate than previous methods.
Emergent mechanisms for long timescales depend on training curriculum and affect performance in memory tasks
Sina Khajehabdollahi · Roxana Zeraati · Emmanouil Giannakakis · Tim Schäfer · Georg Martius · Anna Levina
Recurrent neural networks (RNNs) in the brain and in silico excel at solving tasks with intricate temporal dependencies. Long timescales required for solving such tasks can arise from properties of individual neurons (single-neuron timescale, $\tau$, e.g., membrane time constant in biological neurons) or recurrent interactions among them (network-mediated timescale). However, the contribution of each mechanism for optimally solving memory-dependent tasks remains poorly understood. Here, we train RNNs to solve $N$-parity and $N$-delayed match-to-sample tasks with increasing memory requirements controlled by $N$ by simultaneously optimizing recurrent weights and $\tau$s. We find that for both tasks RNNs develop longer timescales with increasing $N$, but depending on the learning objective, they use different mechanisms. Two distinct curricula define learning objectives: sequential learning of a single-$N$ (single-head) or simultaneous learning of multiple $N$s (multi-head). Single-head networks increase their $\tau$ with $N$ and are able to solve tasks for large $N$, but they suffer from catastrophic forgetting. However, multi-head networks, which are explicitly required to hold multiple concurrent memories, keep $\tau$ constant and develop longer timescales through recurrent connectivity. Moreover, we show that the multi-head curriculum increases training speed and network stability to ablations and perturbations, and allows RNNs to generalize better to tasks beyond their training regime. This curriculum also significantly improves training GRUs and LSTMs for large-$N$ tasks. Our results suggest that adapting timescales to task requirements via recurrent interactions allows learning more complex objectives and improves the RNN's performance.
Polynormer: Polynomial-Expressive Graph Transformer in Linear Time
Chenhui Deng · Zichao Yue · Zhiru Zhang
Graph transformers (GTs) have emerged as a promising architecture that is theoretically more expressive than message-passing graph neural networks (GNNs). However, typical GT models have at least quadratic complexity and thus cannot scale to large graphs. While there are several linear GTs recently proposed, they still lag behind GNN counterparts on several popular graph datasets, which poses a critical concern on their practical expressivity. To balance the trade-off between expressivity and scalability of GTs, we propose Polynormer, a polynomial-expressive GT model with linear complexity. Polynormer is built upon a novel base model that learns a high-degree polynomial on input features. To enable the base model permutation equivariant, we integrate it with graph topology and node features separately, resulting in local and global equivariant attention models. Consequently, Polynormer adopts a linear local-to-global attention scheme to learn high-degree equivariant polynomials whose coefficients are controlled by attention scores. Polynormer has been evaluated on $13$ homophilic and heterophilic datasets, including large graphs with millions of nodes. Our extensive experiment results show that Polynormer outperforms state-of-the-art GNN and GT baselines on most datasets, even without the use of nonlinear activation functions.
On the Generalization and Approximation Capacities of Neural Controlled Differential Equations
Linus Bleistein · Agathe Guilloux
Neural Controlled Differential Equations (NCDE) are a state-of-the-art tool for supervised learning with irregularly sampled time series (Kidger 2020). However, no theoretical analysis of their performance has been provided yet, and it remains unclear in particular how the roughness of the sampling affects their predictions. By merging the rich theory of controlled differential equations (CDE) and Lipschitz-based measures of the complexity of deep neural nets, we take a first step towards the theoretical understanding of NCDE. Our first result is a sampling-dependant generalization bound for this class of predictors. In a second time, we leverage the continuity of the flow of CDEs to provide a detailed analysis of both the sampling-induced bias and the approximation bias. Regarding this last result, we show how classical approximation results on neural nets may transfer to NCDE. Our theoretical results are validated through a series of experiments, for which the code is available at REDACTED.
ConR: Contrastive Regularizer for Deep Imbalanced Regression
Mahsa Keramati · Lili Meng · R. Evans
Imbalanced distributions are ubiquitous in real-world data. They create constraints on Deep Neural Networks to represent the minority labels and avoid bias towards majority labels. The extensive body of imbalanced approaches address categorical label spaces but fail to effectively extend to regression problems where the label space is continuous. Local and global correlations among continuous labels provide valuable insights towards effectively modelling relationships in feature space. In this work, we propose ConR, a contrastive regularizer that models global and local label similarities in feature space and prevents the features of minority samples from being collapsed into their majority neighbours. ConR discerns the disagreements between the label space and feature space, and imposesa penalty on these disagreements. ConR minds the continuous nature of label space with two main strategies in a contrastive manner: incorrect proximities are penalized proportionate to the label similarities and the correct ones are encouraged to model local similarities. ConR consolidates essential considerations into a generic, easy-to-integrate, and efficient method that effectively addresses deep imbalanced regression. Moreover, ConR is orthogonal to existing approaches and smoothly extends to uni- and multi-dimensional label spaces. Our comprehensive experiments show that ConR significantly boosts the performance of all the state-of-the-art methods on four large-scale deep imbalanced regression benchmarks.
ControlVideo: Training-free Controllable Text-to-video Generation
Yabo Zhang · Yuxiang Wei · Dongsheng jiang · XIAOPENG ZHANG · Wangmeng Zuo · Qi Tian
Text-driven diffusion models have unlocked unprecedented abilities in image generation, whereas their video counterpart lags behind due to the excessive training cost.To avert the training burden, we propose a training-free ControlVideo to produce high-quality videos based on the provided text prompts and motion sequences.Specifically, ControlVideo adapts a pre-trained text-to-image model (i.e., ControlNet) for controllable text-to-video generation.To generate continuous videos without flicker effect, we propose an interleaved-frame smoother to smooth the intermediate frames.In particular, interleaved-frame smoother splits the whole videos with successive three-frame clips, and stabilizes each clip by updating the middle frame with the interpolation among other two frames in latent space.Furthermore, a fully cross-frame interaction mechanism have been exploited to further enhance the frame consistency, while a hierarchical sampler is employed to produce long videos efficiently.Extensive experiments demonstrate that our ControlVideo outperforms the state-of-the-arts both quantitatively and qualitatively. It is worthy noting that, thanks to the efficient designs, ControlVideo could generate both short and long videos within several minutes using one NVIDIA 2080Ti. All videos are shown in this anonymous link.
Towards Foundational Models for Molecular Learning on Large-Scale Multi-Task Datasets
Dominique Beaini · Shenyang(Andy) Huang · Joao Cunha · Zhiyi Li · Gabriela Moisescu-Pareja · Oleksandr Dymov · Samuel Maddrell-Mander · Callum McLean · Frederik Wenkel · Luis Müller · Jama Hussein Mohamud · Ali Parviz · Michael Craig · Michał Koziarski · Jiarui Lu · Zhaocheng Zhu · Cristian Gabellini · Kerstin Klaser · Josef Dean · Cas Wognum · Maciej Sypetkowski · Guillaume Rabusseau · Reihaneh Rabbany · Jian Tang · Christopher Morris · Mirco Ravanellu · Guy Wolf · Prudencio Tossou · Hadrien Mary · Therence Bois · Andrew Fitzgibbon · Blazej Banaszewski · Chad Martin · Dominic Masters
Recently, pre-trained foundation models have enabled significant advancements in multiple fields. In molecular machine learning, however, where datasets are often hand-curated, and hence typically small, the lack of datasets with labeled features, and codebases to manage those datasets, has hindered the development of foundation models.In this work, we present seven novel datasets categorized by size into three distinct categories: ToyMix, LargeMix and UltraLarge. These datasets push the boundaries in both the scale and the diversity of supervised labels for molecular learning. They cover nearly 100 million molecules and over 3000 sparsely defined tasks, totaling more than 13 billion individual labels of both quantum and biological nature. In comparison, our datasets contain 300 times more data points than the widely used OGB-LSC PCQM4Mv2 dataset, and 13 times more than the quantum-only QM1B dataset.In addition, to support the development of foundational models based on our proposed datasets, we present the Graphium graph machine learning library which simplifies the process of building and training molecular machine learning models for multi-task and multi-level molecular datasets. Finally, we present a range of baseline results as a starting point of multi-task and multi-level training on these datasets. Empirically, we observe that performance on low-resource biological datasets show improvement by also training on large amounts of quantum data. This indicates that there may be potential in multi-task and multi-level training of a foundation model and fine-tuning it to resource-constrained downstream tasks.
CAMIL: Context-Aware Multiple Instance Learning for Cancer Detection and Subtyping in Whole Slide Images
olga fourkioti · Matt De Vries · Chris Bakal
The visual examination of tissue biopsy sections is fundamental for cancer diagnosis, with pathologists analyzing sections at multiple magnifications to discern tumor cells and their subtypes. However, existing attention-based multiple instance learning (MIL) models, used for analyzing Whole Slide Images (WSIs) in cancer diagnostics, often overlook the contextual information of tumor and neighboring tiles, leading to misclassifications. To address this, we propose the Context-Aware Multiple Instance Learning (CAMIL) architecture. CAMIL incorporates neighbor-constrained attention to consider dependencies among tiles within a WSI and integrates contextual constraints as prior knowledge into the MIL model. We evaluated CAMIL on subtyping non-small cell lung cancer (TCGA-NSCLC) and detecting lymph node (CAMELYON16) metastasis, achieving test AUCs of 0.959\% and 0.975\%, respectively, outperforming other state-of-the-art methods. Additionally, CAMIL enhances model interpretability by identifying regions of high diagnostic value
Feature-aligned N-BEATS with Sinkhorn divergence
Joonhun Lee · Myeongho Jeon · Myungjoo Kang · Kyunghyun Park
We propose Feature-aligned N-BEATS as a domain-generalized time series forecasting model. It is a nontrivial extension of N-BEATS with doubly residual stacking principle (Oreshkin et al. [45]) into a representation learning framework. In particular, it revolves around marginal feature probability measures induced by the intricate composition of residual and feature extracting operators of N-BEATS in each stack and aligns them stack-wise via an approximate of an optimal transport distance referred to as the Sinkhorn divergence. The training loss consists of an empirical risk minimization from multiple source domains, i.e., forecasting loss, and an alignment loss calculated with the Sinkhorn divergence, which allows the model to learn invariant features stack-wise across multiple source data sequences while retaining N-BEATS’s interpretable design and forecasting power. Comprehensive experimental evaluations with ablation studies are provided and the corresponding results demonstrate the proposed model’s forecasting and generalization capabilities.
Feature Learning in Infinite Depth Neural Networks
Greg Yang · Dingli Yu · Chen Zhu · Soufiane Hayou
Empirical studies have consistently demonstrated that increasing the size of neural networks often yields superior performance in practical applications. However, there is a lack of consensus regarding the appropriate scaling strategy, particularly when it comes to increasing the depth of neural networks. In practice, excessively large depths can lead to model performance degradation. In this paper, we introduce Depth-$\mu$P, a principled approach for depth scaling, allowing for the training of arbitrarily deep architectures while maximizing feature learning and diversity among nearby layers. Our method involves dividing the contribution of each residual block and the parameter update by the square root of the depth. Through the use of Tensor Programs, we rigorously establish the existence of a limit for infinitely deep neural networks under the proposed scaling scheme. This scaling strategy ensures more stable training for deep neural networks and guarantees the transferability of hyperparameters from shallow to deep models. To substantiate the efficacy of our scaling method, we conduct empirical validation on neural networks with depths up to $2^{10}$.
TokenFlow: Consistent Diffusion Features for Consistent Video Editing
michal geyer · Omer Bar Tal · Shai Bagon · Tali Dekel
The generative AI revolution has recently expanded to videos. Nevertheless, current state-of-the-art video models are still lagging behind image models in terms of visual quality and user control over the generated content. In this work, we present a framework that harnesses the power of a text-to-image diffusion model for the task of text-driven video editing. Specifically, given a source video and a target text-prompt, our method generates a high-quality video that adheres to the target text, while preserving the spatial layout and motion of the input video. Our method is based on a key observation that consistency in the edited video can be obtained by enforcing consistency in the diffusion feature space. We achieve this by explicitly propagating diffusion features based on inter-frame correspondences, readily available in the model. Thus, our framework does not require any training or fine-tuning, and can work in conjunction with any off-the-shelf text-to-image editing method. We demonstrate state-of-the-art editing results on a variety of real-world videos.
Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs
Woomin Song · Seunghyuk Oh · Sangwoo Mo · Jaehyung Kim · Sukmin Yun · Jung-Woo Ha · Jinwoo Shin
Large language models (LLMs) have established new standards in various natural language processing tasks. However, a primary constraint they face is the context limit, i.e., the maximum number of tokens they can process.To relax the constraint, previous works have explored architectural changes and modifications in positional encoding, but they often require expensive training or do not address the computational demands of self-attention.In this paper, we present Hierarchical cOntext MERging (HOMER), a new training-freescheme designed to overcome the limitations. HOMER harnesses a divide-and-conquer methodology, segmenting extensive inputs into manageable units. The segments are then processed collectively, employing a hierarchical strategy that fuses adjacent chunks at progressive Transformer layers. A token reduction technique precedes each fusion, ensuring memory usage efficiency.We also propose an optimized computational order reducing the memory requirement to logarithmically scale with respect to input length, making it especially favorable for environments with tight memory restrictions. Our experimental results demonstrate the superior performance and memory efficiency of the proposed method, opening doors for broader applications of LLMs in scenarios with extended context requirements.
Deep representations have shown promising performance when transferred to downstream tasks in a black-box manner. Yet, their inherent lack of interpretability remains a significant challenge, as these features are often opaque to human understanding. In this paper, we propose Non-negative Contrastive Learning (NCL), a renaissance of Non-negative Matrix Factorization (NMF) aimed at deriving interpretable features. The power of NCL lies in its enforcement of non-negativity constraints on features, reminiscent of NMF's capability to extract features that align closely with sample clusters. NCL not only aligns mathematically well with an NMF objective but also preserves NMF's interpretability attributes, resulting in a more sparse and disentangled representation compared to standard contrastive learning (CL). Theoretically, we establish guarantees on the identifiability and downstream generalization of NCL. Empirically, we show that these advantages enable NCL to outperform CL significantly on feature disentanglement, feature selection, as well as downstream classification tasks.
Learning Stackable and Skippable LEGO Bricks for Efficient, Reconfigurable, and Variable-Resolution Diffusion Modeling
Huangjie Zheng · Zhendong Wang · Jianbo Yuan · Guanghan Ning · Pengcheng He · Quanzeng You · Hongxia Yang · Mingyuan Zhou
Diffusion models excel at generating photo-realistic images but come with significant computational costs in both training and sampling. While various techniques address these computational challenges, a less-explored issue is designing an efficient and adaptable network backbone for iterative refinement. Current options like U-Net and Vision Transformer often rely on resource-intensive deep networks and lack the flexibility needed for generating images at variable resolutions or with a smaller network than used in training.This study introduces LEGO bricks, which seamlessly integrate Local-feature Enrichment and Global-content Orchestration. These bricks can be stacked to create a test-time reconfigurable diffusion backbone, allowing selective skipping of bricks to reduce sampling costs and generate higher-resolution images than the training data. LEGO bricks enrich local regions with an MLP and transform them using a Transformer block while maintaining a consistent full-resolution image across all bricks. Experimental results demonstrate that LEGO bricks enhance training efficiency, expedite convergence, and facilitate variable-resolution image generation while maintaining strong generative performance. Moreover, LEGO significantly reduces sampling time compared to other methods, establishing it as a valuable enhancement for diffusion models.
Structural and Positional Encodings can significantly improve the performance of Graph Neural Networks in downstream tasks. Recent literature has begun to systematically investigate differences in the structural properties that these approaches encode, as well as performance trade-offs between them. However, the question of which structural properties yield the most effective encoding remains open. In this paper, we investigate this question from a geometric perspective. We propose a novel structural encoding based on discrete Ricci curvature (Local Curvature Profiles, short LCP) and show that it significantly outperforms existing encoding approaches. We further show that combining local structural encodings, such as LCP, with global positional encodings improves downstream performance, suggesting that they capture complementary geometric information. Finally, we compare different encoding types with (curvature-based) rewiring techniques. Rewiring has recently received a surge of interest due to its ability to improve the performance of Graph Neural Networks by mitigating over-smoothing and over-squashing effects. Our results suggest that utilizing curvature information for structural encodings delivers significantly larger performance increases than rewiring.
Boosting Prompting Mechanisms for Zero-Shot Speech Synthesis
Ziyue Jiang · Jinglin Liu · Yi Ren · Jinzheng He · Zhenhui Ye · Shengpeng Ji · Qian Yang · Chen Zhang · Pengfei Wei · Chunfeng Wang · Xiang Yin · Zejun MA · Zhou Zhao
Zero-shot text-to-speech (TTS) aims to synthesize voices with unseen speech prompts, which significantly reduces the data and computation requirements for voice cloning by skipping the fine-tuning process. However, the prompting mechanisms of zero-shot TTS still face challenges in the following aspects: 1) previous works of zero-shot TTS are typically trained with single-sentence prompts, which significantly restricts their performance when the data is relatively sufficient during the inference stage. 2) The prosodic information in prompts is highly coupled with timbre, making it untransferable to each other. This paper introduces Mega-TTS, a generic prompting mechanism for zero-shot TTS, to tackle the aforementioned challenges. Specifically, we design a powerful acoustic autoencoder that separately encodes the prosody and timbre information into the compressed latent space while providing high-quality reconstructions. Then, we propose a multi-reference timbre encoder and a prosody latent language model (P-LLM) to extract useful information from multi-sentence prompts. We further leverage the probabilities derived from multiple P-LLM outputs to produce transferable and controllable prosody. Experimental results demonstrate that Mega-TTS could not only synthesize identity-preserving speech with a short prompt of an unseen speaker from arbitrary sources but consistently outperform the fine-tuning method when the volume of data ranges from 10 seconds to 5 minutes. Furthermore, our method enables to transfer various speaking styles to the target timbre in a fine-grained and controlled manner. Audio samples can be found in https://boostprompt.github.io/boostprompt/.
ReLU Strikes Back: Exploiting Activation Sparsity in Large Language Models
Iman Mirzadeh · Keivan Alizadeh-Vahid · Sachin Mehta · Carlo C del Mundo · Oncel Tuzel · Golnoosh Samei · Mohammad Rastegari · Mehrdad Farajtabar
Large Language Models (LLMs) with billions of parameters have drastically transformed AI applications. However, their demanding computation during inference has raised significant challenges for deployment on resource-constrained devices. Despite recent trends favoring alternative activation functions such as GELU or SiLU, known for increased computation, this study strongly advocates for reinstating ReLU activation in LLMs. We demonstrate that using the ReLU activation function has a negligible impact on convergence and performance while significantly reducing computation and weight transfer. This reduction is particularly valuable during the memory-bound inference step, where efficiency is paramount. Exploring sparsity patterns in ReLU-based LLMs, we unveil the reutilization of activated neurons for generating new tokens and leveraging these insights, we propose practical strategies to substantially reduce LLM inference computation up to three times, using ReLU activations with minimal performance trade-offs.
Learning to Reject with a Fixed Predictor: Application to Decontextualization
Christopher Mohri · Daniel Andor · Eunsol Choi · Michael Collins · Anqi Mao · Yutao Zhong
We study the problem of classification with a reject option for a fixed predictor, crucial to natural language processing. We introduce a new problem formulation for this scenario, and an algorithm minimizing a new surrogate loss function. We provide a complete theoretical analysis of the surrogate loss function with a strong $H$-consistency guarantee. For evaluation, we choose the \textit{decontextualization} task, and provide a manually-labelled dataset of $2\mathord,000$ examples. Our algorithm significantly outperforms the baselines considered, with a $\sim 25$% improvement in coverage when halving the error rate, which is only $\sim 3$% away from the theoretical limit.
The capabilities of large language models (LLMs) have sparked debate over whether such systems just learn an enormous collection of superficial statistics or a coherent model of the data generating process---a world model. We find evidence for the latter by analyzing the learned representations of three spatial datasets (world, US, NYC places) and three temporal datasets (historical figures, artworks, news headlines) in the Llama-2 family of models. We discover that LLMs learn linear representations of space and time across multiple scales. These representations are robust to prompting variations and unified across different entity types (e.g. cities and landmarks). In addition, we identify individual space neurons'' and
time neurons'' that reliably encode spatial and temporal coordinates. Our analysis demonstrates that modern LLMs acquire structured knowledge about fundamental dimensions such as space and time, supporting the view that they learn not merely superficial statistics, but literal world models.
The Generative AI Paradox: “What It Can Create, It May Not Understand”
Peter West · Ximing Lu · Nouha Dziri · Faeze Brahman · Linjie Li · Jena Hwang · Liwei Jiang · Jillian Fisher · Abhilasha Ravichander · Khyathi Chandu · Benjamin Newman · Pang Wei Koh · Allyson Ettinger · Yejin Choi
The recent wave of generative AI has sparked unprecedented global attention, with both excitement and concern over potentially superhuman levels of artificial intelligence: models now take only seconds to produce outputs that would challenge or exceed the capabilities even of expert humans. At the same time, models still show basic errors in understanding that would not be expected even in non-expert humans. This presents us with an apparent paradox: how do we reconcile seemingly superhuman capabilities with the persistence of errors that few humans would make? In this work, we posit that this tension reflects a divergence in the configuration of intelligence in today's generative models relative to intelligence in humans. Specifically, we propose and test the Generative AI Paradox hypothesis: generative models, having been trained directly to reproduce expert-like outputs, acquire generative capabilities that are not contingent upon---and can therefore exceed---their ability to understand those same types of outputs. This contrasts with humans, for whom basic understanding almost always precedes the ability togenerate expert-level outputs. We test this hypothesis through controlled experiments analyzing generation vs.~understanding in generative models, across both language and image modalities. Our results show that although models can outperform humans in generation, they consistently fall short of human capabilities in measures of understanding, as well as weaker correlation between generation and understanding performance, and more brittleness to adversarial inputs. Our findings support the hypothesis that models' generative capability may not be contingent upon understanding capability, and call for caution in interpreting artificial intelligence by analogy to human intelligence.
Task Adaptation from Skills: Information Geometry, Disentanglement, and New Objectives for Unsupervised Reinforcement Learning
Yucheng Yang · Tianyi Zhou · Qiang HE · Lei Han · Mykola Pechenizkiy · Meng Fang
Unsupervised reinforcement learning (URL) aims to learn general skills for unseen downstream tasks. Mutual Information Skill Learning (MISL) addresses URL by maximizing the mutual information between states and skills but lacks sufficient theoretical analysis, e.g., how well its learned skills can initialize a downstream task's policy. Our new theoretical analysis shows that the diversity and separatability of learned skills are fundamentally critical to downstream task adaptation but MISL does not necessarily guarantee them. To improve MISL, we propose a novel disentanglement metric LSEPIN and build an information-geometric connection between LSEPIN and downstream task adaptation cost. For better geometric properties, we investigate a new strategy that replaces the KL divergence in information geometry with Wasserstein distance. We extend the geometric analysis to it, which leads to a novel skill-learning objective WSEP. It is theoretically justified to be helpful to task adaptation and it is capable of discovering more initial policies for downstream tasks than MISL. We further propose a Wasserstein distance-based algorithm PWSEP can theoretically discover all potentially optimal initial policies.
The Alignment Problem from a Deep Learning Perspective: A Position Paper
Richard Ngo · Lawrence Chan · Sören Mindermann
AI systems based on deep learning have reached or surpassed human performance in a range of narrow domains. In coming decades, artificial general intelligence (AGI) may surpass human capabilities at many critical tasks. In this position paper, we examine the technical difficulty of fine-tuning hypothetical AGI systems based on pretrained deep models to pursue goals that are aligned with human interests. We argue that, if trained like today's most capable models, AGI systems could learn to act deceptively to receive higher reward, learn internally-represented goals which generalize beyond their fine-tuning distributions, and pursue those goals using power-seeking strategies. We review emerging evidence for these properties. AGIs with these properties would be difficult to align and may appear aligned even when they are not.
Ito Diffusion Approximation of Universal Ito Chains for Sampling, Optimization and Boosting
Aleksei Ustimenko · Aleksandr Beznosikov
This work considers a rather general and broad class of Markov chains, Ito chains that look like Euler-Maryama discretization of some Stochastic Differential Equation. The chain we study is a unified framework for theoretical analysis. It comes with almost arbitrary isotropic and state-dependent noise instead of normal and state-independent one, as in most related papers. Moreover, the drift and diffusion coefficient in our chain can be inexact to cover a wide range of applications such as Stochastic Gradient Langevin Dynamics, sampling, Stochastic Gradient Descent, or Stochastic Gradient Boosting. We prove the bound in $\mathcal{W}_2$-distance between the laws of our Ito chain and the corresponding differential equation. These results improve or cover most of the known estimates. Moreover, for some particular cases, our analysis is the first.
We extend JAX with the capability to automatically differentiate higher-order functions (functionals and operators). By representing functions as infinite dimensional generalization of arrays, we seamlessly use JAX's existing primitive system to implement higher-order functions. We present a set of primitive operators that serve as foundational building blocks for constructing several key types of functionals. For every introduced primitive operator, we derive and implement both linearization and transposition rules, aligning with JAX's internal protocols for forward and reverse mode automatic differentiation. This enhancement allows for functional differentiation in the same syntax traditionally use for functions. The resulting functional gradients are themselves functions ready to be invoked in python. We showcase this tool's efficacy and simplicity through applications where functional derivatives are indispensable.
VersVideo: Leveraging Enhanced Temporal Diffusion Models for Versatile Video Generation
Jinxi Xiang · Ricong Huang · Jun Zhang · Guanbin Li · Xiao Han · Yang Wei
Creating stable, controllable videos is a complex task due to the need for significant variation in temporal dynamics and cross-frame temporal consistency. To address this, we enhance the spatial-temporal capability and introduce a versatile video generation model, VersVideo, which leverages textual, visual, and stylistic conditions. Current video diffusion models typically extend image diffusion architectures by supplementing 2D operations (such as convolutions and attentions) with temporal operations. While this approach is efficient, it often restricts spatial-temporal performance due to the oversimplification of standard 3D operations. To counter this, we incorporate two key elements: (1) multi-excitation paths for spatial-temporal convolutions with dimension pooling across different axes, and (2) multi-expert spatial-temporal attention blocks. These enhancements boost the model's spatial-temporal performance without significantly escalating training and inference costs. We also tackle the issue of information loss that arises when a variational autoencoder is used to transform pixel space into latent features and then back into pixel frames. To mitigate this, we incorporate temporal modules into the decoder to maintain inter-frame consistency. Lastly, by utilizing the innovative denoising UNet and decoder, we develop a unified ControlNet model suitable for various conditions, including image, Canny, HED, depth, and style. Examples of the videos generated by our model can be found at https://anonymous-pages.github.io/video_demos/.
Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning
Li Ren · Chen Chen · Liqiang Wang · Kien Hua
Deep Metric Learning (DML) has long attracted the attention of the machine learning community as a key objective. Existing solutions concentrate on fine-tuning the pre-trained models on conventional image datasets. As a result of the success of recent pre-trained models derived from larger-scale datasets, it is challenging to adapt the model to the DML tasks in the local data domain while retaining the previously gained knowledge. In this paper, we investigate parameter-efficient methods for fine-tuning the pre-trained model for DML tasks. In particular, we propose a novel and effective framework based on learning Visual Prompts (VPT) in the pre-trained Vision Transformers (ViT). Based on the conventional proxy-based DML paradigm, we augment the proxy by incorporating the semantic information from the input image and the ViT, in which we optimize the visual prompts for each class. We demonstrate that our new approximations with semantic information are superior to representative capabilities, thereby improving metric learning performance. We conduct extensive experiments to demonstrate that our proposed framework is superior and efficient by evaluating popular DML benchmarks. In particular, we demonstrate that our fine-tuning method achieves comparable or even better performance than recent state-of-the-art full fine-tuning works of DML while tuning only a small percentage of total parameters.
PanoDiffusion: 360-degree Panorama Outpainting via Diffusion
Tianhao Wu · Chuanxia Zheng · Tat-Jen Cham
Generating complete 360\textdegree{} panoramas from narrow field of view images is ongoing research as omnidirectional RGB data is not readily available. Existing GAN-based approaches face some barriers to achieving higher quality output, and have poor generalization performance over different mask types. In this paper, we present our 360\textdegree{} indoor RGB panorama outpainting model using latent diffusion models (LDM), called PanoDiffusion. We introduce a new bi-modal latent diffusion structure that utilizes both RGB and depth panoramic data during training, which works surprisingly well to outpaint depth-free RGB images during inference. We further propose a novel technique of introducing progressive camera rotations during each diffusion denoising step, which leads to substantial improvement in achieving panorama wraparound consistency. Results show that our PanoDiffusion not only significantly outperforms state-of-the-art methods on RGB panorama outpainting by producing diverse well-structured results for different types of masks, but can also synthesize high-quality depth panoramas to provide realistic 3D indoor models.
Inversion by Direct Iteration: An Alternative to Denoising Diffusion for Image Restoration
Peyman Milanfar · Mauricio Delbracio
Pre-training with Synthetic Data Helps Offline Reinforcement Learning
Zecheng Wang · Che Wang · Zixuan Dong · Keith Ross
Recently, it has been shown that for offline deep reinforcement learning (DRL), pre-training Decision Transformer with a large language corpus can improve downstream performance (Reid et al., 2022). A natural question to ask is whether this performance gain can only be achieved with language pre-training, or can be achieved with simpler pre-training schemes which do not involve language. In this paper, we first show that language is not essential for improved performance, and indeed pre-training with synthetic IID data for a small number of updates can match the performance gains from pre-training with a large language corpus; moreover, pre-training with data generated by a one-step Markov chain can further improve the performance. Inspired by these experimental results, we then consider pre-training Conservative Q-Learning (CQL), a popular offline DRL algorithm, which is Q-learning-based and typically employs a Multi-Layer Perceptron (MLP) backbone. Surprisingly, pre-training with simple synthetic data for a small number of updates can also improve CQL, providing consistent performance improvement on D4RL Gym locomotion datasets. The results of this paper not only illustrate the importance of pre-training for offline DRL but also show that the pre-training data can be synthetic and generated with remarkably simple mechanisms.
What Matters to You? Towards Visual Representation Alignment for Robot Learning
Thomas Tian · Chenfeng Xu · Masayoshi Tomizuka · Jitendra Malik · Andrea Bajcsy
When operating in service of people, robots need to optimize rewards aligned with end-user preferences. Since robots will rely on raw perceptual inputs like RGB images, their rewards will inevitably use visual representations. Recently there has been excitement in using representations from pre-trained visual models, but key to making these work in robotics is fine-tuning, which is typically done via proxytasks like dynamics prediction or enforcing temporal cycle-consistency. However, all these proxy tasks bypass the human’s input on what matters to them, exacerbating spurious correlations and ultimately leading to robot behaviors that are misaligned with user preferences. In this work, we propose that robots should leverage human feedback to align their visual representations with the end user and disentangle what matters for the task. We propose Representation-Aligned Preference-based Learning (RAPL), a method for solving the visual representation alignment problem and visual reward learning problem through the lens of preference-based learning and optimal transport. Across experiments in X-MAGICAL and in robotic manipulation, we find that RAPL’s reward consistently generates preferred robot behaviors with high sample efficiency, and shows strong zero-shot generalization when the visual representation is learned from a different embodiment than the robot’s.
An operator preconditioning perspective on training in physics-informed machine learning
Tim De Ryck · Florent Bonnet · Siddhartha Mishra · Emmanuel de Bézenac
In this paper, we investigate the behavior of gradient descent algorithms in physics-informed machine learning methods like PINNs, which minimize residuals connected to partial differential equations (PDEs). Our key result is that the difficulty in training these models is closely related to the conditioning of a specific differential operator. This operator, in turn, is associated to the Hermitian square of the differential operator of the underlying PDE. If this operator is ill-conditioned, it results in slow or infeasible training. Therefore, preconditioning this operator is crucial. We employ both rigorous mathematical analysis and empirical evaluations to investigate various strategies, explaining how they better condition this critical operator, and consequently improve training.
Adaptive Regularization of Representation Rank as an Implicit Constraint of Bellman Equation
Qiang HE · Tianyi Zhou · Meng Fang · Setareh Maghsudi
Representation rank is an important concept for understanding the role of Neural Networks (NNs) in Deep Reinforcement learning (DRL), which measures the expressive capacity of value networks. Existing studies focus on unboundedly maximizing this rank; nevertheless, that approach would introduce overly complex models in the learning, thus undermining performance. Hence, fine-tuning representation rank presents a challenging and crucial optimization problem. To address this issue, we find a guiding principle for adaptive control of the representation rank. We employ the Bellman equation as a theoretical foundation and derive an upper bound on the cosine similarity of consecutive state-action pairs representations of value networks. We then leverage this upper bound to propose a novel regularizer, namely BEllman Equation-based automatic rank Regularizer (BEER). This regularizer adaptively regularizes the representation rank, thus improving the DRL agent's performance. We first validate the effectiveness of automatic control of rank on illustrative experiments. Then, we scale up BEER to complex continuous control tasks by combining it with the deterministic policy gradient method. Among 12 challenging DeepMind control tasks, BEER outperforms the baselines by a large margin. Besides, BEER demonstrates significant advantages in Q-value approximation. Our anonymous code is available at https://anonymous.4open.science/r/BEER-3C4B.
Rethinking the Uniformity Metric in Self-Supervised Learning
Xianghong Fang · Jian Li · Qiang Sun · Wang Benyou
Uniformity plays a crucial role in the assessment of learned representations, contributing to a deeper comprehension of self-supervised learning. The seminal work by \citet{Wang2020UnderstandingCR} introduced a uniformity metric that quantitatively measures the collapse degree of learned representations. Directly optimizing this metric together with alignment proves to be effective in preventing constant collapse. However, we present both theoretical and empirical evidence revealing that this metric lacks sensitivity to dimensional collapse, highlighting its limitations. To address this limitation and design a more effective uniformity metric, this paper identifies five fundamental properties, some of which the existing uniformity metric fails to meet. We subsequently introduce a novel uniformity metric that satisfies all of these desiderata and exhibits sensitivity to dimensional collapse. When applied as an auxiliary loss in various established self-supervised methods, our proposed uniformity metric consistently enhances their performance in downstream tasks.
Taking inspiration from Set Theory, we introduce SetCSE, an innovative information retrieval framework. SetCSE employs sets to represent complex semantics and incorporates well-defined operations for structured information querying within the provided context. In alignment with this framework, we introduce an inter-set contrastive learning objective to enhance language model comprehension concerning the given semantics. Additionally, we present a suite of operations that leverage the enhanced sentence embeddings for querying, including SetCSE intersection, difference, and operation series. Throughout this paper, we demonstrate that SetCSE adheres to the conventions of natural language expression, provides a significant enhancement in the discriminatory capability of underlying language models, and enables numerous information retrieval tasks involving complex and intricate prompts that cannot be achieved using existing search methods.
Separate and Diffuse: Using a Pretrained Diffusion Model for Better Source Separation
Shahar Lutati · Eliya Nachmani · Lior Wolf
The problem of speech separation, also known as the cocktail party problem,refers to the task of isolating a single speech signal from a mixture of speechsignals. Previous work on source separation derived an upper bound for thesource separation task in the domain of human speech. This bound is derived fordeterministic models. Recent advancements in generative models challenge thisbound. We show how the upper bound can be generalized to the case of randomgenerative models. Applying a diffusion model Vocoder that was pretrained tomodel single-speaker voices on the output of a deterministic separation model leadsto state-of-the-art separation results. It is shown that this requires one to combinethe output of the separation model with that of the diffusion model. In our method,a linear combination is performed, in the frequency domain, using weights that areinferred by a learned model. We show state-of-the-art results on 2, 3, 5, 10, and 20speakers on multiple benchmarks. In particular, for two speakers, our method isable to surpass what was previously considered the upper performance bound.
Amortized Network Intervention to Steer the Excitatory Point Processes
Zitao Song · Wendi Ren · Shuang Li
We tackle the challenge of large-scale network intervention for guiding excitatory point processes, such as infectious disease spread or traffic congestion control. Our model-based reinforcement learning utilizes neural ODEs to capture how the networked excitatory point processes will evolve subject to the time-varying changes in network topology. Our approach incorporates Gradient-Descent based Model Predictive Control (GD-MPC), offering policy flexibility to accommodate prior knowledge and constraints. To address the intricacies of planning and overcome the high dimensionality inherent to such decision-making problems, we design an Amortize Network Interventions (ANI) framework, allowing for the pooling of optimal policies from history and other contexts, while ensuring a permutation equivalent property. This property enables efficient knowledge transfer and sharing across diverse contexts. Our approach has broad applications, from curbing infectious disease spread to reducing carbon emissions through traffic light optimization, and thus has the potential to address critical societal and environmental challenges.
CORN: Contact-based Object Representation for Nonprehensile Manipulation of General Unseen Objects
Yoonyoung Cho · Junhyek Han · Yoontae Cho · Beomjoon Kim
Nonprehensile manipulation is essential for manipulating objects that are too thin, large, or otherwise ungraspable in the wild. To sidestep the difficulty of contact modeling in conventional modeling-based approaches, reinforcement learning (RL) has recently emerged as a promising alternative. However, previous RL approaches either lack the ability to generalize over diverse object shapes, or use simple action primitives that limit the diversity of robot motions. Furthermore, using RL over diverse object geometry is challenging due to the high cost of training a policy that takes in high-dimensional sensory inputs. We propose a novel contact-based object representation and pretraining pipeline to tackle this. To enable massively parallel training, we leverage a lightweight patch-based transformer architecture for our encoder that processes point clouds, thus scaling our training across thousands of environments. Compared to learning from scratch, or other shape representation baselines, our representation facilitates both time- and data-efficient learning. We validate the efficacy of our overall system by zero-shot transferring the trained policy to novel real-world objects. We highly recommend the video attached in the supplementary material. Code and videos are available at \url{https://sites.google.com/view/contact-non-prehensile}.
Grokking in Linear Estimators -- A Solvable Model that Groks without Understanding
Noam Levi · Alon Beck · Yohai Bar-Sinai
Grokking is the intriguing phenomenon where a model learns to generalize long after it has fit the training data. We show both analytically and numerically that grokking can surprisingly occur in linear networks performing linear tasks in a simple teacher-student setup. In this setting, the full training dynamics is derived in terms of the expected training and generalization data covariance matrix. We present exact predictions on how the grokking time depends on input and output dimensionality, train sample size, regularization, and network parameters initialization. The key findings are that late generalization increase may not imply a transition from "memorization" to "understanding", but can simply be an artifact of the accuracy measure. We provide empirical verification for these propositions, along with preliminary results indicating that some predictions also hold for deeper networks, with non-linear activations.
Fair Classifiers that Abstain without Harm
Tongxin Yin · Jean-Francois Ton · Ruocheng Guo · Yuanshun Yao · Mingyan Liu · Yang Liu
In critical applications, it is vital for classifiers to defer decision-making to humans. We propose a post-hoc method that makes existing classifiers selectively abstain from predicting certain samples. Our abstaining classifier is incentivized to maintain the original accuracy for each sub-population (i.e. no harm) while achieving a set of group fairness definitions to a user specified degree. To this end, we design an Integer Programming (IP) procedure that assigns abstention decisions for each training sample to satisfy a set of constraints. To generalize the abstaining decisions to test samples, we then train a surrogate model to learn the abstaining decisions based on the IP solutions in an end-to-end manner. We analyze the feasibility of the IP procedure to determine the possible abstention rate for different levels of unfairness tolerance and accuracy constraint for achieving no harm. To the best of our knowledge, this work is the first to identify the theoretical relationships between the constraint parameters and the required abstention rate. Our theoretical results are important since a high abstention rate is often infeasible in practice due to a lack of human resources. Our framework outperforms existing methods in terms of fairness disparity without sacrificing accuracy at similar abstention rates.
Whittle Index with Multiple Actions and State Constraint for Inventory Management
Chuheng Zhang · Xiangsen Wang · Wei Jiang · Xianliang Yang · Siwei Wang · Lei Song · Jiang Bian
Whittle index is a heuristic tool that leads to good performance for the restless bandits problem. In this paper, we extend Whittle index to a new multi-agent reinforcement learning (MARL) setting with multiple discrete actions and a possibly changing constraint on the state space, resulting in WIMS (Whittle Index with Multiple actions and State constraint). This setting is common for inventory management where each agent chooses a replenishing quantity level for the corresponding stock-keeping-unit (SKU) such that the total profit is maximized while the total inventory does not exceed a certain limit. Accordingly, we propose a deep MARL algorithm based on WIMS for inventory management. Empirically, our algorithm is evaluated on real large-scale inventory management problems with up to 2307 SKUs and outperforms operation-research-based methods and baseline MARL algorithms.
Representation Deficiency in Masked Language Modeling
Yu Meng · Jitin Krishnan · Sinong Wang · Qifan Wang · Yuning Mao · Han Fang · Marjan Ghazvininejad · Jiawei Han · Luke Zettlemoyer
Masked Language Modeling (MLM) has been one of the most prominent approaches for pretraining bidirectional text encoders due to its simplicity and effectiveness. One notable concern about MLM is that the special $\texttt{[MASK]}$ symbol causes a discrepancy between pretraining data and downstream data as it is present only in pretraining but not in fine-tuning. In this work, we offer a new perspective on the consequence of such a discrepancy: We demonstrate empirically and theoretically that MLM pretraining allocates some model dimensions exclusively for representing $\texttt{[MASK]}$ tokens, resulting in a representation deficiency for real tokens and limiting the pretrained model's expressiveness when it is adapted to downstream data without $\texttt{[MASK]}$ tokens. Motivated by the identified issue, we propose MAE-LM, which pretrains the Masked Autoencoder architecture with MLM where $\texttt{[MASK]}$ tokens are excluded from the encoder. Empirically, we show that MAE-LM improves the utilization of model dimensions for real token representations, and MAE-LM consistently outperforms MLM-pretrained models on the GLUE and SQuAD benchmarks.
Cameras as Rays: Sparse-view Pose Estimation via Ray Diffusion
Jason Zhang · Amy Lin · MONEISH KUMAR · Tzu-Hsuan Yang · Deva Ramanan · Shubham Tulsiani
Estimating camera poses is a fundamental task for 3D reconstruction and remains challenging given sparse views ($<$10). In contrast to existing approaches that pursue top-down prediction of global parametrizations of camera extrinsics, we propose a distributed representation of camera pose that treats a camera as a bundle of rays. This representation allows for a tight coupling with spatial image features improving pose precision. We observe that this representation is naturally suited for set-level level transformers and develop a regression-based approach that maps image patches to corresponding rays. To capture the inherent uncertainties in sparse-view pose inference, we adapt this approach to learn a denoising diffusion model which allows us to sample plausible modes while improving performance. Our proposed methods, both regression- and diffusion-based, demonstrate state-of-the-art performance on camera pose estimation on CO3D while generalizing to unseen object categories and in-the-wild captures.
Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement
Linlu Qiu · Liwei Jiang · Ximing Lu · Melanie Sclar · Valentina Pyatkin · Chandra Bhagavatula · Bailin Wang · Yoon Kim · Yejin Choi · Nouha Dziri · Xiang Ren
The ability to derive the underlying principles from a handful of observations and then generalize to novel situations---known as inductive reasoning---is central to human intelligence. Prior work suggests that language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks. In this work, we conduct a systematic study of the inductive reasoning capabilities of LMs through $\textit{iterative hypothesis refinement}$, a technique that more closely mirrors the human inductive process than standard input-output prompting. Iterative hypothesis refinement employs a three-step process: proposing, selecting, and refining hypotheses in the form of textual rules. By examining the intermediate rules, we observe that LMs are phenomenal $\textit{hypothesis proposers}$ (i.e., generating candidate rules), and when coupled with a (task-specific) symbolic interpreter that is able to systematically filter the proposed set of rules, this hybrid approach achieves strong results across inductive reasoning benchmarks that require inducing causal relations, language-like instructions, and symbolic concepts. However, they also behave as puzzling $\textit{inductive reasoners}$, showing notable performance gaps in rule induction (i.e., identifying plausible rules) and rule application (i.e., applying proposed rules to instances), suggesting that LMs are proposing hypotheses without being able to actually apply the rules. Through extensive empirical and human analyses, we further reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.
Robust Similarity Learning with Difference Alignment Regularization
Shuo Chen · Gang Niu · Chen Gong · Okan Koc · Jian Yang · Masashi Sugiyama
Similarity-based representation learning has shown impressive capabilities in both supervised (e.g., metric learning) and unsupervised (e.g., contrastive learning) scenarios. Existing approaches effectively constrained the representation difference (i.e., the disagreement between the embeddings of two instances) to fit the corresponding (pseudo) similarity supervision. However, most of them can hardly restrict the variation of representation difference, sometimes leading to overfitting results where the clusters are disordered by drastically changed differences. In this paper, we thus propose a novel difference alignment regularization (DAR) to encourage all representation differences between inter-class instances to be as close as possible, so that the learning algorithm can produce consistent differences to distinguish data points from each other. To this end, we construct a new cross-total-variation (CTV) norm to measure the divergence among representation differences, and we convert it into an equivalent stochastic form for easy optimization. Then, we integrate the proposed regularizer into the empirical loss for difference-aligned similarity learning (DASL), shrinking the hypothesis space and alleviating overfitting. Theoretically, we prove that our regularizer tightens the error bound of the traditional similarity learning. Experiments on multi-domain data demonstrate the superiority of DASL over existing approaches in both supervised metric learning and unsupervised contrastive learning tasks.
Explaining Time Series via Contrastive and Locally Sparse Perturbations
Zichuan Liu · Yingying ZHANG · Tianchun Wang · Zefan Wang · Dongsheng Luo · Mengnan Du · Min Wu · Yi Wang · Chunlin Chen · Lunting Fan · Qingsong Wen
Explaining multivariate time series is a compound challenge, as it requires identifying important locations in the time series and matching complex temporal patterns.Although previous saliency-based methods addressed the challenges,their perturbation may not alleviate the distribution shift issue, which is inevitable especially in heterogeneous samples.We present ContraLSP, a locally sparse model that introduces counterfactual samples to build uninformative perturbations but keeps distribution using contrastive learning.Furthermore, we incorporate sample-specific sparse gates to generate more binary-skewed and smooth masks, which easily integrate temporal trends and select the salient features parsimoniously.Empirical studies on both synthetic and real-world datasets show that ContraLSP outperforms state-of-the-art models, demonstrating a substantial improvement in explanation quality for time series data.The source code is available at \url{https://github.com/zichuan-liu/ContraLSP}.
Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via Conditional Probability Curvature
Guangsheng Bao · Yanbin Zhao · Zhiyang Teng · Linyi Yang · Yue Zhang
Large language models (LLMs) have shown the ability to produce fluent and cogent content, presenting both productivity opportunities and societal risks. To build trustworthy AI systems, it is imperative to distinguish between machine-generated and human-authored content. The leading zero-shot detector, DetectGPT, showcases commendable performance but is marred by its intensive computational costs. In this paper, we introduce the concept of conditional probability curvature to elucidate discrepancies in word choices between LLMs and humans within a given context. Utilizing this curvature as a foundational metric, we present Fast-DetectGPT, an optimized zero-shot detector, which substitutes DetectGPT's perturbation step with a more efficient sampling step. Our evaluations on various datasets, source models, and test conditions indicate that Fast-DetectGPT not only surpasses DetectGPT by a relative around 75\% in both the white-box and black-box settings but also accelerates the detection process by a factor of 340, as detailed in Table 1.
LLM Augmented LLMs: Expanding Capabilities through Composition
Rachit Bansal · Bidisha Samanta · Siddharth Dalmia · Nitish Gupta · Sriram Ganapathy · Abhishek Bapna · Prateek Jain · Partha Talukdar
Foundational models with billions of parameters which have been trained on large corpus of data have demonstrated non-trivial skills in a variety of domains. However, due to their monolithic structure, it is challenging and expensive to augment them or impart new skills. On the other hand, due to their adaptation abilities,several new instances of these models are being trained towards new domains and tasks. In this work, we study the problem of efficient and practical composition of existing foundation models with more specific models to enable newer capabilities. To this end, we propose CALM—Composition to Augment Language Models—which introduces cross-attention between models to compose their representations and enable new capabilities. Salient features of CALM are: (i) Scales up LLMs on new tasks by ‘re-using’ existing LLMs along with a few additional parameters and data, (ii) Existing model weights are kept intact, and hence preserves existing capabilities, and (iii) Applies to diverse domains and settings. We illustrate that augmenting PaLM2-S with a smaller model trained on low-resource languages results in an absolute improvement of up to 13% on tasks like translation into English and arithmetic reasoning for low-resource languages. Similarly,when PaLM2-S is augmented with a code-specific model, we see a relative improvement of 40% over the base model for code generation and explanation tasks—on-par with fully fine-tuned counterparts.
LLM-grounded Video Diffusion Models
Long Lian · Baifeng Shi · Adam Yala · trevor darrell · Boyi Li
Text-conditioned diffusion models have emerged as a promising tool for neural video generation. However, current models still struggle with intricate spatiotemporal prompts and often generate restricted or incorrect motion (e.g., even lacking the ability to be prompted for objects moving from left to right). To address these limitations, we introduce LLM-grounded Video Diffusion (LVD). Instead of directly generating videos from the text inputs, LVD first leverages a large language model (LLM) to generate dynamic scene layouts based on the text inputs and subsequently uses the generated layouts to guide a diffusion model for video generation. We show that LLMs are able to understand complex spatiotemporal dynamics from text alone and generate layouts that align closely with both the prompts and the object motion patterns typically observed in the real world. We then propose to guide video diffusion models with these layouts by adjusting the attention maps. Our approach is training-free and can be integrated into any video diffusion model that admits classifier guidance. Our results demonstrate that LVD significantly outperforms its base video diffusion model and several strong baseline methods in faithfully generating videos with the desired attributes and motion patterns.
LabelDP-Pro: Learning with Label Differential Privacy via Projections
Badih Ghazi · Yangsibo Huang · Pritish Kamath · Ravi Kumar · Pasin Manurangsi · Chiyuan Zhang
Label differentially private (label DP) algorithms seek to preserve the privacy of the labels in a training dataset in settings where the features are known to the adversary. In this work, we study a new family of label DP training algorithms. Unlike most prior label DP algorithms that have been based on label randomization, our algorithm naturally leverages the power of the central model of DP. It interleaves gradient projection operations with private stochastic gradient descent steps in order to improve the utility of the trained model while guaranteeing the privacy of the labels. We show that such projection-based algorithms can be made practical and that they improve on the state-of-the art for label DP training in the high-privacy regime. We complement our empirical evaluation with theoretical results shedding light on the efficacy of our method through the lens of bias-variance trade-offs.
Graphpulse: Topological representations for temporal graph property prediction
Kiarash Shamsi · Farimah Poursafaei · Shenyang(Andy) Huang · Tran Gia Bao Ngo · Baris Coskunuzer · Cuneyt Akcora
Many real-world networks evolve over time, and predicting the evolution of such networks remains a challenging task. Graph Neural Networks (GNNs) have shown empirical success for learning on static graphs, but they lack the ability to effectively learn from nodes and edges with different timestamps. Consequently, the prediction of future properties in temporal graphs remains a relatively under-explored area.In this paper, we aim to bridge this gap by introducing a principled framework, named GraphPulse. The framework combines two important techniques for the analysis of temporal graphs within a Newtonian framework. First, we employ the Mapper method, a key tool in topological data analysis, to extract essential clustering information from graph nodes. Next, we harness the sequential modeling capabilities of Recurrent Neural Networks (RNNs) for temporal reasoning regarding the graph's evolution. Through extensive experimentation, we demonstrate that our model enhances the ROC-AUC metric by 10.2\% in comparison to the top-performing state-of-the-art method across various temporal networks. We provide the implementation of GraphPulse at https://anonymous.4open.science/r/Graph_Pulse
Self-supervised Representation Learning from Random Data Projectors
Yi Sui · Tongzi Wu · Jesse Cresswell · Ga Wu · George Stein · Xiao Shi (Gary) Huang · Xiaochen Zhang · Maksims Volkovs
Self-supervised representation learning (SSRL) has advanced considerably by exploiting the transformation invariance assumption under artificially designed data augmentations. While augmentation-based SSRL algorithms push the boundaries of performance in computer vision and natural language processing, they are often not directly applicable to other data modalities, and can conflict with application-specific data augmentation constraints. This paper presents an SSRL approach that can be applied to any data modality and network architecture because it does not rely on augmentations or masking. Specifically, we show that high-quality data representations can be learned by reconstructing random data projections. We evaluate the proposed approach on a wide range of representation learning tasks that span diverse modalities and real-world applications. We show that it outperforms multiple state-of-the-art SSRL baselines. Due to its wide applicability and strong empirical results, we argue that learning from randomness is a fruitful research direction worthy of attention and further study.
Self-Consuming Generative Models Go MAD
Sina Alemohammad · Josue Casco-Rodriguez · Lorenzo Luzi · Ahmed Imtiaz Humayun · Hossein Babaei · Daniel LeJeune · Ali Siahkoohi · Richard Baraniuk
Seismic advances in generative AI algorithms for imagery, text, and other data types have led to the temptation to use AI-synthesized data to train next-generation models. Repeating this process creates an autophagous ("self-consuming") loop whose properties are poorly understood. We conduct a thorough analytical and empirical analysis using state-of-the-art generative image models of three families of autophagous loops that differ in how fixed or fresh real training data is available through the generations of training and whether the samples from previous-generation models have been biased to trade off data quality versus diversity. Our primary conclusion across all scenarios is that without enough fresh real data in each generation of an autophagous loop, future generative models are doomed to have their quality (precision) or diversity (recall) progressively decrease. We term this condition Model Autophagy Disorder (MAD), by analogy to mad cow disease, and show that appreciable MADness arises in just a few generations.
DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation
Jiaxiang Tang · Jiawei Ren · Hang Zhou · Ziwei Liu · Gang Zeng
Recent advances in 3D content creation mostly leverage optimization-based 3D generation via score distillation sampling (SDS).Though promising results have been exhibited, these methods often suffer from slow per-sample optimization, limiting their practical usage. In this paper, we propose DreamGaussian, a novel 3D content generation framework that achieves both efficiency and quality simultaneously. Our key insight is to design a generative 3D Gaussian Splatting model with companioned mesh extraction and texture refinement in UV space.In contrast to the occupancy pruning used in Neural Radiance Fields, we demonstrate that the progressive densification of 3D Gaussians converges significantly faster for 3D generative tasks.To further enhance the texture quality and facilitate downstream applications, we introduce an efficient algorithm to convert 3D Gaussians into textured meshes and apply a fine-tuning stage to refine the details.Extensive experiments demonstrate the superior efficiency and competitive generation quality of our proposed approach.Notably, DreamGaussian produces high-quality textured meshes in just 2 minutes from a single-view image, achieving approximately 10 times acceleration compared to existing methods.
ValUES: A Framework for Systematic Validation of Uncertainty Estimation in Semantic Segmentation
Kim-Celine Kahl · Carsten Lüth · Maximilian Zenk · Klaus Maier-Hein · Paul F. Jaeger
Uncertainty estimation is an essential and heavily-studied component for the reliable application of semantic segmentation methods. While various studies exist claiming methodological advances on the one hand, and successful application on the other hand, the field is currently hampered by a gap between theory and practice leaving fundamental questions unanswered: Can data-related and model-related uncertainty really be separated in practice? Which components of an uncertainty method are essential for real-world performance? Which uncertainty method works well for which application? In this work, we link this research gap to a lack of systematic and comprehensive evaluation of uncertainty methods. Specifically, we identify three key pitfalls in current literature and present an evaluation framework that bridges the research gap by providing 1) a controlled environment for studying data ambiguities as well as distribution shifts, 2) systematic ablations of relevant method components, and 3) test-beds for the five predominant uncertainty applications: OoD-detection, active learning, failure detection, calibration, and ambiguity modeling. Empirical results on simulated as well as real-world data demonstrate how the proposed framework is able to answer the predominant questions in the field revealing for instance that 1) separation of uncertainty types works on simulated data but does not necessarily translate to real-world data, 2) aggregation of scores is a crucial but currently neglected component of uncertainty methods, 3) While ensembles are performing most robustly across the different downstream tasks and settings, test-time augmentation often constitutes a light-weight alternative. (Code will be released upon acceptance)
Backdoor Secrets Unveiled: Identifying Backdoor Data with Optimized Scaled Prediction Consistency
Soumyadeep Pal · Yuguang Yao · Ren Wang · Bingquan Shen · Sijia Liu
Modern machine learning (ML) systems demand substantial training data, often resorting to external sources. Nevertheless, this practice renders them vulnerable to backdoor poisoning attacks. Prior backdoor defense strategies have primarily focused on the identification of backdoored models or poisoned data characteristics, typically operating under the assumption of access to clean data. In this work, we delve into a relatively underexplored challenge: the automatic identification of backdoor data within a poisoned dataset, all under realistic conditions, i.e., without the need for additional clean data or manually defining a threshold for backdoor detection. We draw an inspiration from the scaled prediction consistency (SPC) technique, which exposes the prediction invariance of poisoned data to an input scaling factor. Based on this, we resolve the backdoor data identification problem as a hierarchical data splitting optimization problem, leveraging a novel SPC-based loss function as the primary optimization objective. Our innovation unfolds in several key aspects. First, we revisit the vanilla SPC method, unveiling its limitations in addressing the proposed backdoor identification problem. Subsequently, we develop a bi-level optimization-based approach to precisely identify backdoor data by minimizing the advanced SPC loss. Finally, we demonstrate the efficacy of our proposal against a spectrum of backdoor attacks, encompassing basic label-corrupted attacks as well as more sophisticated clean-label attacks, evaluated across various benchmark datasets. Experiment results show that our approach often surpasses the performance of current baselines in identifying backdoor data points, resulting in about an average 4\%-20\% improvement in AUROC.
Minimum width for universal approximation using ReLU networks on compact domain
Namjun Kim · Chanho Min · Sejun Park
It has been shown that deep neural networks of a large enough width are universal approximators but they are not if the width is too small.There were several attempts to characterize the minimum width $w_{\min}$ enabling the universal approximation property; however, only a few of them found the exact values.In this work, we show that the minimum width for universal approximation of $L^p$ functions from $[0,1]^{d_x}$ to $\mathbb R^{d_y}$ is exactly $\max\\{d_x,d_y,2\\}$ if an activation function is ReLU-Like (e.g., ReLU, GELU, Softplus).Compared to the known result for ReLU networks, $w_{\min}=\max\\{d_x+1,d_y\\}$ when the domain is ${\mathbb R^{d_x}}$, our result first shows that approximation on a compact domain requires smaller width than on ${\mathbb R^{d_x}}$.We next prove a lower bound on $w_{\min}$ for uniform approximation using general activation functions including ReLU: $w_{\min}\ge d_y+1$ if $d_x
Tractable Probabilistic Graph Representation Learning with Graph-Induced Sum-Product Networks
Federico Errica · Mathias Niepert
We introduce Graph-Induced Sum-Product Networks (GSPNs), a new probabilistic framework for graph representation learning that can tractably answer probabilistic queries. Inspired by the computational trees induced by vertices in the context of message-passing neural networks, we build hierarchies of sum-product networks (SPNs) where the parameters of a parent SPN are learnable transformations of the a-posterior mixing probabilities of its children's sum units. Due to weight sharing and the tree-shaped computation graphs of GSPNs, we obtain the efficiency and efficacy of deep graph networks with the additional advantages of a probabilistic model. We show the model's competitiveness on scarce supervision scenarios, under missing data, and for graph classification in comparison to popular neural models. We complement the experiments with qualitative analyses on hyper-parameters and the model's ability to answer probabilistic queries.
COLEP: Certifiably Robust Learning-Reasoning Conformal Prediction via Probabilistic Circuits
Mintong Kang · Nezihe Merve Gürel · Linyi Li · Bo Li
Conformal prediction has shown spurring performance in constructing statistically rigorous prediction sets for arbitrary black-box machine learning models, assuming the data is exchangeable. However, even small adversarial perturbations during the inference can violate the exchangeability assumption, challenge the coverage guarantees, and result in a subsequent decline in empirical coverage. In this work, we propose a certifiably robust learning-reasoning conformal prediction framework (COLEP) via probabilistic circuits, which comprise a data-driven learning component that trains statistical models to learn different semantic concepts, and a reasoning component that encodes knowledge and characterizes the relationships among the trained models for logic reasoning. To achieve exact and efficient reasoning, we employ probabilistic circuits (PCs) within the reasoning component. Theoretically, we provide end-to-end certification of prediction coverage for COLEP in the presence of $\ell_2$ bounded adversarial perturbations. We also provide certified coverage considering the finite size of the calibration set. Furthermore, we prove that COLEP achieves higher prediction coverage and accuracy over a single model as long as the utilities of knowledge models are non-trivial. Empirically, we show the validity and tightness of our certified coverage, demonstrating the robust conformal prediction of COLEP on various datasets, including GTSRB, CIFAR10, and AwA2. We show that COLEP achieves up to 12% improvement in certified coverage on GTSRB, 9% on CIFAR-10, and 14% on AwA2.
BarLeRIa: An Efficient Tuning Framework for Referring Image Segmentation
Yaoming Wang · Li Jin · XIAOPENG ZHANG · Bowen Shi · Chenglin Li · Wenrui Dai · Hongkai Xiong · Qi Tian
Pre-training followed by full fine-tuning has gradually been substituted by Parameter-Efficient Tuning (PET) in the field of computer vision tasks. PET has gained popularity, especially in the context of large-scale models, due to its ability to reduce transfer learning costs and conserve hardware resources. However, existing PET approaches primarily focus on recognition tasks and typically support uni-modal optimization, neglecting dense prediction tasks and vision language interactions. To address this limitation, we propose a novel PET framework called Bi-directional Intertwined Vision Language Efficient Tuning for Referring Image Segmentation (BarLeRIa), which leverages bi-directional intertwined vision language adapters to fully exploit the frozen pre-trained models' potential in cross-modal dense prediction tasks. In BarLeRIa, two different tuning modules are employed for efficient global and local attention, as well as an intertwined vision language tuning algorithm for efficient modal fusion. Extensive experiments conducted on challenging RefCOCO-related benchmarks demonstrating the superiority of BarLeRIa over prior PET methods with a significant margin, \emph{i.e.}, achieving an average improvement of 5.6\%. Remarkably, without requiring additional training datasets, BarLeRIa even surpasses SOTA full fine-tuning approaches.
CellPLM: Pre-training of Cell Language Model Beyond Single Cells
Hongzhi Wen · Wenzhuo Tang · Xinnan Dai · Jiayuan Ding · Wei Jin · Yuying Xie · Jiliang Tang
The current state-of-the-art single-cell pre-trained models are greatly inspired by the success of large language models. They trained transformers by treating genes as tokens and cells as sentences. However, three fundamental differences between single-cell data and natural language data are overlooked: (1) scRNA-seq data are presented as bag-of-genes instead of sequences of RNAs; (2) Cell-cell relations are more intricate and important than inter-sentence relations; and (3) The quantity of single-cell data is considerably inferior to text data, and they are very noisy. In light of these characteristics, we propose a new pre-trained model, CellPLM, which takes cells as tokens and tissues as sentences. In addition, we leverage spatially-resolved transcriptomic data in pre-training to facilitate learning cell-cell relationships and introduce a Gaussian prior distribution as an additional inductive bias to overcome data limitations. CellPLM is the first single-cell pre-trained transformer that encodes cell-cell relations and it consistently achieves state-of-the-art performance across distinct downstream tasks.
Spoken Question Answering and Speech Continuation Using Spectrogram-Powered LLM
Eliya Nachmani · Alon Levkovitch · Roy Hirsch · Julian Salazar · Chulayuth Asawaroengchai · Soroosh Mariooryad · Ehud Rivlin · RJ Skerry-Ryan · Michele Tadmor Ramanovich
We present a novel approach to adapting pre-trained large language models (LLMs) to perform question answering (QA) and speech continuation. By endowing the LLM with a pre-trained speech encoder, our model becomes able to take speech inputs and generate speech outputs. The entire system is trained end-to-end and operates directly on spectrograms, simplifying our architecture. Key to our approach is a training objective that jointly supervises speech recognition, text continuation, and speech synthesis using only paired speech-text pairs, enabling a `cross-modal' chain-of-thought within a single decoding pass. Our method surpasses existing spoken language models in speaker preservation and semantic coherence. Furthermore, the proposed model improves upon direct initialization in retaining the knowledge of the original LLM as demonstrated through spoken QA datasets.
Effective pruning of web-scale datasets based on complexity of concept clusters
Amro Kamal · Evgenia Rusak · Kushal Tirumala · Wieland Brendel · Kamalika Chaudhuri · Ari Morcos
Utilizing massive web-scale datasets has led to unprecedented performance gains in machine learning models, but also imposes outlandish compute requirements for their training. In order to improve training and data efficiency, we here push the limits of pruning large-scale multimodal datasets for training CLIP-style models. Today’s most effective pruning method on ImageNet clusters data samples into separate concepts according to their embedding and prunes away the most proto- typical samples. We scale this approach to LAION and improve it by noting that the pruning rate should be concept-specific and adapted to the complexity of the concept. Using a simple and intuitive complexity measure, we are able to reduce the training cost to a quarter of regular training. More specifically, we are able to outperform the LAION-trained OpenCLIP-ViT-B/32 model on ImageNet zero-shot accuracy by 1.1p.p. while only using 27.7% of the data and training compute. On the DataComp Medium benchmark, we achieve a new state-of-the-art ImageNet zero-shot accuracy and a competitive average zero-shot accuracy on 38 evaluation tasks.
Peering Through Preferences: Unraveling Feedback Acquisition for Aligning Large Language Models
Hritik Bansal · John Dang · Aditya Grover
Aligning large language models (LLMs) with human values and intents critically involves the use of human or AI feedback. While dense feedback annotations are expensive to acquire and integrate, sparse feedback presents a structural design choice between ratings (e.g., score Response A on a scale of 1-7) and rankings (e.g., is Response A better than Response B?). In this work, we analyze the effect of this design choice for the alignment and evaluation of LLMs. We uncover an inconsistency problem wherein the preferences inferred from ratings and rankings significantly disagree 60% for both human and AI annotators. Our subsequent analysis identifies various facets of annotator biases that explain this phenomena such as human annotators would rate denser responses higher while preferring accuracy during pairwise judgments, for a particular comparison instance. To our surprise, we observe that the choice of feedback protocol has a significant effect on the evaluation of aligned LLMs. In particular, we find that LLMs that leverage rankings data for alignment (say model X) are preferred over those that leverage ratings data (say model Y), with a rank-based evaluation protocol (is X/Y's response better than reference response?) but not with a rating-based evaluation protocol (score Rank X/Y's response on a scale of 1-7). Our findings thus shed light on critical gaps in methods for evaluating the real-world utility of language models and their strong dependence on the feedback protocol used for alignment.
DATS: Difficulty-Aware Task Sampler for Meta-Learning Physics-Informed Neural Networks
Maryam Toloubidokhti · Yubo Ye · Ryan Missel · Xiajun Jiang · Nilesh Kumar · Ruby Shrestha · Linwei Wang
Advancements in deep learning have led to the development of physics-informed neural networks (PINNs) for solving partial differential equations (PDEs) without being supervised by PDE solutions. While vanilla PINNs require training one network per PDE configuration, recent works have showed the potential to meta-learn PINNs across a range of PDE configurations. It is however known that PINN training is associated with different levels of difficulty, depending on the underlying PDE configurations or the number of residual sampling points available. Existing meta-learning approaches, however, treat all PINN tasks equally. We address this gap by introducing a novel difficulty-aware task sampler (DATS) for meta-learning of PINNs. We derive an optimal analytical solution to optimize the probability for sampling individual PINN tasks in order to minimize their validation loss across tasks. We further present two alternative strategies to utilize this sampling probability to either adaptively weigh PINN tasks, or dynamically allocate optimal residual points across tasks. We evaluated DATS against uniform and self-paced task-sampling baselines on two representative meta-PINN models, across four benchmark PDEs as well as three different residual point sampling strategies. The results demonstrated that DATS was able to improve the accuracy of meta-learned PINN solutions when reducing performance disparity across PDE configurations, at only a fraction of residual sampling budgets required by its baselines.
A Semantic Invariant Robust Watermark for Large Language Models
Aiwei Liu · Leyi Pan · Xuming Hu · Shiao Meng · Lijie Wen
Watermark algorithms for large language models (LLMs) have achieved extremely high accuracy in detecting text generated by LLMs. Such algorithms typically involve adding extra watermark logits to the LLM's logits at each generation step. However, prior algorithms face a trade-off between attack robustness and security robustness. This is because the watermark logits for a token are determined by a certain number of preceding tokens; a small number leads to low security robustness, while a large number results in insufficient attack robustness. In this work, we propose a semantic invariant watermarking method for LLMs that provides both attack robustness and security robustness. The watermark logits in our work are determined by the semantics of all preceding tokens. Specifically, we utilize another embedding LLM to generate semantic embeddings for all preceding tokens, and then these semantic embeddings are transformed into the watermark logits through our trained watermark model.Subsequent analyses and experiments demonstrated the attack robustness of our method in semantically invariant settings: synonym substitution and text paraphrasing settings. Finally, we also show that our watermark possesses adequate security robustness.
Are Human-generated Demonstrations Necessary for In-context Learning?
Rui Li · Guoyin Wang · Jiwei Li
Despite the promising few-shot ability of large language models (LLMs), the standard paradigm of In-context Learning (ICL) suffers the disadvantages of susceptibility to selected demonstrations and the intricacy to generate these demonstrations. In this paper, we raise the fundamental question that whether human-generated demonstrations are necessary for ICL. To answer this question, we propose self-contemplation prompting strategy (SEC), a paradigm free from human-crafted demonstrations. The key point of SEC is that, instead of using hand-crafted examples as demonstrations in ICL, SEC asks LLMs to first create demonstrations on their own, based on which the final output is generated. SEC is a flexible framework and can be adapted to both the vanilla ICL and the chain-of-thought (CoT), but with greater ease: as the manual-generation process of both examples and rationale can be saved. Extensive experiments in arithmetic reasoning, commonsense reasoning, multi-task language understanding, and code generation benchmarks, show that SEC, which does not require hand-crafted demonstrations, significantly outperforms the zero-shot learning strategy, and achieves comparable results to ICL with hand-crafted demonstrations. This demonstrates that, for many tasks, contemporary LLMs possess a sufficient level of competence to exclusively depend on their own capacity for decision making, removing the need for external training data.
UNR-Explainer: Counterfactual Explanations for Unsupervised Node Representation Learning Models
Hyunju Kang · Geonhee Han · Hogun Park
Node representation learning, such as Graph Neural Networks (GNNs), has become one of the important learning methods in machine learning, and the demand for reliable explanation generation is growing. Despite extensive research on explanation generation for supervised node representation learning, explaining unsupervised models has been less explored. To address this gap, we propose a method for generating counterfactual (CF) explanations in unsupervised node representation learning, aiming to identify the most important subgraphs that cause a significant change in the $k$-nearest neighbors of a node of interest in the learned embedding space upon perturbation. The $k$-nearest neighbor-based CF explanation method provides simple, yet pivotal, information for understanding unsupervised downstream tasks, such as top-$k$ link prediction and clustering. Furthermore, we introduce a Monte Carlo Tree Search (MCTS)-based explainability method for generating expressive CF explanations for **U**nsupervised **N**ode **R**epresentation learning methods, which we call **UNR-Explainer**. The proposed method demonstrates improved performance on six datasets for both unsupervised GraphSAGE and DGI.
SparseFormer: Sparse Visual Recognition via Limited Latent Tokens
Ziteng Gao · Zhan Tong · Limin Wang · Mike Zheng Shou
Human visual recognition is a sparse process, where only a few salient visual cues are attended to rather than every detail being traversed uniformly. However, most current vision networks follow a dense paradigm, processing every single visual unit (such as pixels or patches) in a uniform manner. In this paper, we challenge this dense paradigm and present a new method, coined SparseFormer, to imitate human’s sparse visual recognition in an end-to-end manner. SparseFormer learns to represent images using a highly limited number of tokens (as low as 49) in the latent space with sparse feature sampling procedure instead of processing dense units in the original image space. Therefore, SparseFormer circumvents most of dense operations on the image space and has much lower computational costs. Experiments on the ImageNet-1K classification show that SparseFormer achieves performance on par with canonical or well-established models while offering more favorable accuracy-throughput tradeoff. Moreover, the design of our network can be easily extended to the video classification with promising performance at lower computational costs. We hope that our work can provide an alternative way for visual modeling and inspire further research on sparse vision architectures.
Revisiting Data Augmentation in Deep Reinforcement Learning
Jianshu Hu · Yunpeng Jiang · Paul Weng
Various data augmentation techniques have been recently proposed in image-based deep reinforcement learning (DRL).Although they empirically demonstrate the effectiveness of data augmentation for improving sample efficiency or generalization, which technique should be preferred is not always clear. To tackle this question, we analyze existing methods to better understand them and to uncover how they are connected.Notably, by expressing the variance of the Q-targets and that of the empirical actor/critic losses of these methods, we can analyze the effects of their different components and compare them.We furthermore formulate an explanation about how these methods may be affected by choosing different data augmentation transformations in calculating the target Q-values.This analysis suggests recommendations on how to exploit data augmentation in a more principled way.In addition, we include a regularization term called tangent prop, previously proposed in computer vision, but whose adaptation to DRL is novel to the best of our knowledge.We evaluate our proposition and validate our analysis in several domains. Compared to different relevant baselines, we demonstrate that it achieves state-of-the-art performance in most environments and shows higher sample efficiency and better generalization ability in some complex environments.
Protein Multimer Structure Prediction via PPI-guided Prompt Learning
Ziqi Gao · Xiangguo SUN · Zijing Liu · Yu Li · Hong Cheng · Jia Li
Understanding the 3D structures of protein multimers is crucial, as they play a vital role in regulating various cellular processes. It has been empirically confirmed that the multimer structure prediction (MSP) can be well handled in a step-wise assembly fashion using provided dimer structures and predicted protein-protein interactions (PPIs). However, due to the biological gap in the formation of dimers and larger multimers, directly applying PPI prediction techniques can often cause a poor generalization to the MSP task. To address this challenge, we aim to extend the PPI knowledge to multimers of different scales (i.e., chain numbers). Specifically, we propose PromptMSP, a pre-training and Prompt tuning framework for Multimer Structure Prediction. First, we tailor the source and target tasks for effective PPI knowledge learning and efficient inference, respectively. We design PPI-inspired prompt learning to narrow the gaps of two task formats and generalize the PPI knowledge to multimers of different scales. We utilize the meta-learning approach to learn a reliable initialization of the prompt model, enabling our prompting framework to effectively adapt to limited data for large-scale multimers. Empirically, we achieve both significant accuracy (RMSD and TM-Score) and efficiency improvements compared to advanced MSP models. For instance, when both methods utilize AlphaFold-Multimer to prepare dimers, PromptMSP achieves a 21.43\% improvement in TM-Score with only 0.5\% of the running time compared to the competitive MoLPC baseline.
Trajeglish: Learning the Language of Driving Scenarios
Jonah Philion · Xue Bin Peng · Sanja Fidler
A longstanding challenge for self-driving development is the ability to simulate dynamic driving scenarios seeded from recorded driving logs. Given an initial scene observed during a test drive, we seek the ability to sample plausible scene-consistent future trajectories for all agents in the scene, even when the actions for a subset of agents are chosen by an external source, such as a black-box self-driving planner. In order to model the complicated spatial and temporal interaction across agents in driving scenarios, we propose to tokenize the motion of dynamic agents and use tools from language modeling to model the full sequence of multi-agent actions. Our traffic model explicitly captures intra-timestep dependence between agents, which we show is essential for simulation given only a single frame of historical scene context, as well as enabling improvements when provided longer historical context. We demonstrate competitive results sampling scenarios given initializations from the Waymo Open Dataset with full autonomy as well as partial autonomy, and show that the representations learned by our model can quickly be adapted to improve performance on nuScenes, a considerably smaller dataset. We additionally use density estimates from our model to quantify the saliency of context length and intra-timestep interaction for the traffic modeling task.
Learning Robust Generalizable Radiance Field with Visibility and Feature Augmented Point Representation
Jiaxu Wang · Ziyi Zhang · Renjing Xu
This paper introduces a novel paradigm for the generalizable neural radiance field (NeRF). Previous generic NeRF methods combine multiview stereo techniques with image-based neural rendering for generalization, yielding impressive results, while suffering from three issues. First, occlusions often result in inconsistent feature matching. Then, they deliver distortions and artifacts in geometric discontinuities and locally sharp shapes due to their individual process of sampled points and rough feature aggregation. Third, their image-based representations experience severe degradations when source views are not near enough to the target view. To address challenges, we propose the first paradigm that constructs the generalizable neural field based on point-based rather than image-based rendering, which we call Generalizable neural Point Field (GPF). Our approach explicitly models by geometric priors and augments it with neural features to eliminate occlusions in feature-fetching. We propose a novel nonuniform log sampling strategy to improve both rendering speed and reconstruction quality. Moreover, we present a learnable kernel spatially augmentedwith features for feature aggregations, mitigating distortions at places with drastically varying geometries. Besides, our representation can be easily manipulated. Experiments show that our model can deliver better geometries, view consistencies, and rendering quality than all counterparts and benchmarks on three datasets in both generalization and finetuning settings, preliminarily proving the potential of the new paradigm for generic NeRF.
Diffusion in Diffusion: Cyclic One-Way Diffusion for Text-Vision-Conditioned Generation
Ruoyu Wang · Yongqi Yang · Zhihao Qian · Ye Zhu · Yu Wu
Originating from the diffusion phenomenon in physics that describes particle movement, the diffusion generative models inherit the characteristics of stochastic random walk in the data space along the denoising trajectory. However, the intrinsic mutual interference among image regions contradicts the need for practical downstream application scenarios where the preservation of low-level pixel information from given conditioning is desired (e.g., customization tasks like personalized generation and inpainting based on a user-provided single image). In this work, we investigate the diffusion (physics) in diffusion (machine learning) properties and propose our Cyclic One-Way Diffusion (COW) method to control the direction of diffusion phenomenon given a pre-trained frozen diffusion model for versatile customization application scenarios, where the low-level pixel information from the conditioning needs to be preserved. Notably, unlike most current methods that incorporate additional conditions by fine-tuning the base text-to-image diffusion model or learning auxiliary networks, our method provides a novel perspective to understand the task needs and is applicable to a wider range of customization scenarios in a learning-free manner. Extensive experiment results show that our proposed COW can achieve more flexible customization based on strict visual conditions in different application settings.
Post-hoc bias scoring is optimal for fair classification
Wenlong Chen · Yegor Klochkov · Yang Liu
We consider a binary classification problem under group fairness constraints, which can be one of Demographic Parity (DP), Equalized Opportunity (EOp), or Equalized Odds (EO). We propose an explicit characterization of Bayes optimal classifier under the fairness constraints, which turns out to be a simple modification rule of the unconstrained classifier. Namely, we introduce a novel instance-level measure of bias, which we call bias score, and the modification rule is a simple linear rule on top of the finite amount of bias scores. Based on this characterization, we develop a post-hoc approach that allows us to adapt to fairness constraints while maintaining high accuracy. In the case of DP and EOp constraints, the modification rule is thresholding a single bias score, while in the case of EO constraints we are required to fit a linear modification rule with 2 parameters. The method can also be applied for composite group-fairness criteria, such as ones involving several sensitive attributes. We achieve competitive or better performance compared to both in-processing and post-processing methods across three datasets: Adult, COMPAS, and CelebA. Unlike most post-processing methods, we do not require access to sensitive attributes during the inference time.
Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoning
Linhao Luo · Yuan-Fang Li · Reza Haffari · Shirui Pan
Large language models (LLMs) have demonstrated impressive reasoning abilities in complex tasks. However, they lack up-to-date knowledge and experience hallucinations during reasoning, which can lead to incorrect reasoning processes and diminish their performance and trustworthiness. Knowledge graphs (KGs), which capture vast amounts of facts in a structured format, offer a reliable source of knowledge for reasoning. Nevertheless, existing KG-based LLM reasoning methods only treat KGs as factual knowledge bases and overlook the importance of their structural information for reasoning. In this paper, we propose a novel method called reasoning on graphs (RoG) that synergizes LLMs with KGs to enable faithful and interpretable reasoning. Specifically, we present a planning-retrieval-reasoning framework, where RoG first generates relation paths grounded by KGs as faithful plans. These plans are then used to retrieve valid reasoning paths from the KGs for LLMs to conduct faithful reasoning. Furthermore, RoG not only distills knowledge from KGs to improve the reasoning ability of LLMs through training but also allows seamless integration with any arbitrary LLMs during inference. Extensive experiments on two benchmark KGQA datasets demonstrate that RoG achieves state-of-the-art performance on KG reasoning tasks and generates faithful and interpretable reasoning results.
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang · Ricky T. Q. Chen · Chenghao Liu · Aaron Courville · Yoshua Bengio
We tackle the problem of sampling from intractable high-dimensional density functions, a fundamental task that often appears in machine learning and statistics. We extend recent sampling-based approaches that leverage controlled stochastic processes to model approximate samples from these target densities. The main drawback of these approaches is that the training objective requires full trajectories to compute, resulting in sluggish credit assignment issues due to use of entire trajectories and a weak learning signal.In this work, we present Diffusion Generative Flow Samplers (DGFS), a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments, via parameterizing an additional ``flow function''.Our method takes inspiration from the theory developed for generative flow networks (GFlowNets), allowing us to make use of intermediate learning signals and benefit from off-policy exploration capabilities.Through a variety of challenging experiments, we demonstrate that DGFS results in more accurate estimates of the normalization constant than closely-related prior methods.
Aligning Relational Learning with Lipschitz Fairness
Yaning Jia · Chunhui Zhang · Soroush Vosoughi
Relational learning has gained significant attention, led by the expressiveness of Graph Neural Networks (GNNs) on graph data. While the inherent biases in common graph data are involved in GNN training, it poses a serious challenge to constraining the GNN output perturbations induced by input biases, thereby safeguarding fairness during training. The Lipschitz constant, a technique from robust statistics, can limit the maximum changes in the output concerning the input, taking into account associated irrelevant biased factors. It is an efficient and provable method to examine the output stability of machine learning models without incurring additional computational costs. Recently, its use in controlling the stability of Euclidean neural networks, the calculation of the precise Lipschitz constant remains elusive for non-Euclidean neural networks like GNNs, especially within fairness contexts. However, no existing research has investigated Lipschitz constants to shed light on stabilizing the GNN outputs, especially when working on graph data with implicit biases. To narrow this gap, we begin with the general GNNs operating on an attributed graph, and formulate a Lipschitz constant to limit the changes in the output regarding biases associated with the input. Additionally, we theoretically analyze how the Lipschitz constant of a GNN model could constrain the output perturbations induced by biases learned from data for fairness training. We experimentally validate the Lipschitz constant's effectiveness in limiting biases of the model output. Finally, from a training dynamics perspective, we demonstrate why the theoretical Lipschitz constant can effectively guide the GNN training to better trade-off between accuracy and fairness.
BroGNet: Momentum-Conserving Graph Neural Stochastic Differential Equation for Learning Brownian Dynamics
Suresh Suresh · Jayadeva Jayadeva · Sayan Ranu · N. M. Anoop Krishnan
Neural networks (NNs) that exploit strong inductive biases based on physical laws and symmetries have shown remarkable success in learning the dynamics of physical systems directly from their trajectory. However, these works focus only on the systems that follow deterministic dynamics, such as Newtonian or Hamiltonian. Here, we propose a framework, namely Brownian graph neural networks (BroGNet), combining stochastic differential equations (SDEs) and GNNs to learn Brownian dynamics directly from the trajectory. We modify the architecture of BroGNet to enforce linear momentum conservation of the system, which, in turn, provides superior performance on learning dynamics as revealed empirically. We demonstrate this approach on several systems, namely, linear spring, linear spring with binary particle types, and non-linear spring systems, all following Brownian dynamics at finite temperatures. We show that BroGNet significantly outperforms proposed baselines across all the benchmarked Brownian systems. In addition, we demonstrate zero-shot generalizability of BroGNet to simulate unseen system sizes that are two orders of magnitude larger and to different temperatures than those used during training. Finally, we show that BroGNet conserves the momentum of the system resulting in superior performance and data efficiency. Altogether, our study contributes to advancing the understanding of the intricate dynamics of Brownian motion and demonstrates the effectiveness of graph neural networks in modeling such complex systems.
A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors
Olivier Laurent · Emanuel Aldea · Gianni Franchi
The distribution of the weights of modern deep neural networks (DNNs) - crucial for uncertainty quantification and robustness - is an eminently complex object due to its extremely high dimensionality. This paper proposes one of the first large-scale explorations of the posterior distribution of deep Bayesian Neural Networks (BNNs), expanding our study to real-world vision tasks and architectures. Specifically, we investigate the optimal approach for approximating the posterior, analyze the connection between posterior quality and uncertainty quantification, delve into the impact of modes on the posterior, and explore methods for visualizing the posterior. Moreover, we uncover weight-space symmetries as a critical aspect for understanding the posterior. To this extent, we develop an in-depth assessment of the impact of both permutation and scaling symmetries that tend to obfuscate the Bayesian posterior. While the first type of transformation is known for duplicating modes, we explore the relationship between the latter and L2 regularization, challenging previous misconceptions. Finally, to help the community improve our understanding of the Bayesian posterior, we will release the first large-scale checkpoint dataset, including thousands of real-world models, along with our codes, after the anonymity period.
FedCDA: Federated Learning with Cross-rounds Divergence-aware Aggregation
Haozhao Wang · Haoran Xu · Yichen Li · Yuan Xu · Ruixuan Li · Tianwei Zhang
In Federated Learning (FL), model aggregation is pivotal. It involves a global server iteratively aggregating client local trained models in successive rounds without accessing private data. Traditional methods typically aggregate the local model from the current round alone. However, due to the statistical heterogeneity across clients, the local model from each client may be greatly diverse, making the obtained global model incapable of maintaining their specific knowledge. In this paper, we introduce a novel method, FedCDA, which selectively aggregates local models from various rounds, decreasing discrepancies between local models. The principle behind FedCDA is that the local model from each client may converge to distinct local optima over rounds due to the varied received global models and non-convex essences of deep neural networks, and each local model fits its local data well. Therefore, for each client, we select a local model from multiple rounds to minimize the divergence from other clients. This ensures the aggregated global model remains aligned with all selected local models to maintain their data knowledge. Extensive experiments conducted on various models and datasets reveal our approach outperforms state-of-the-art aggregation methods.
Equivariant Matrix Function Neural Networks
Ilyes Batatia · Lars Leon Schaaf · Gábor Csányi · Christoph Ortner · Felix Faber
Graph Neural Networks (GNNs), especially message-passing neural networks (MPNNs), have emerged as powerful architectures for learning on graphs in diverse applications. However, MPNNs face challenges when modeling non-local interactions in systems such as large conjugated molecules, metals, or amorphous materials.Although Spectral GNNs and traditional neural networks such as recurrent neural networks and transformers mitigate these challenges, they often lack extensivity, adaptability, generalizability, computational efficiency, or fail to capture detailed structural relationships or symmetries in the data. To address these concerns, we introduce Matrix Function Neural Networks (MFNs), a novel architecture that parameterizes non-local interactions through analytic matrix equivariant functions. Employing resolvent expansions offers a straightforward implementation and the potential for linear scaling with system size.The MFN architecture achieves state-of-the-art performance in standard graph benchmarks, such as the ZINC and TU datasets, and is able to capture intricate non-local interactions in quantum systems. The code and the datasets will be made public.
Sharpness-Aware Data Poisoning Attack
Pengfei He · Han Xu · Jie Ren · Yingqian Cui · Shenglai Zeng · Hui Liu · Charu Aggarwal · Jiliang Tang
Recent research has highlighted the vulnerability of Deep Neural Networks (DNNs) against data poisoning attacks. These attacks aim to inject poisoning samples into the models' training dataset such that the trained models have inference failures. While previous studies have executed different types of attacks, one major challenge that greatly limits their effectiveness is the uncertainty of the re-training process after the injection of poisoning samples. It includes the uncertainty of training initialization, algorithm and model architecture. To address this challenge, we propose a new strategy called Sharpness-Aware Data Poisoning Attack (SAPA). In particular, it leverages the concept of DNNs' loss landscape sharpness to optimize the poisoning effect on the (approximately) worst re-trained model. Extensive experiments demonstrate that SAPA offers a general and principled strategy that significantly enhances various types of poisoning attacks against various types of re-training uncertainty.
Understanding the Effects of RLHF on LLM Generalisation and Diversity
Robert Kirk · Ishita Mediratta · Christoforos Nalmpantis · Jelena Luketina · Eric Hambro · Edward Grefenstette · Roberta Raileanu
Large language models (LLMs) fine-tuned with reinforcement learning from humanfeedback (RLHF) have been used in some of the most widely deployed AI modelsto date, such as OpenAI’s ChatGPT or Anthropic’s Claude. While there has beensignificant work developing these methods, our understanding of the benefits anddownsides of each stage in RLHF is still limited. To fill this gap, we present anextensive analysis of how each stage of the process (i.e. supervised fine-tuning(SFT), reward modelling, and RLHF) affects two key properties: out-of-distributiongeneralisation (OOD) and output diversity. OOD generalisation is crucial given thewide range of real-world scenarios in which these models are being used, whileoutput diversity refers to the model’s ability to generate varied outputs, and isimportant for a variety of use cases. We perform our analysis across two basemodels on both summarisation and instruction following tasks, the latter beinghighly relevant for current LLM use cases. We find that RLHF generalises betterthan SFT to new inputs, particularly as the distribution shift between train and testbecomes larger. However, RLHF significantly reduces output diversity compared toSFT across a variety of measures, implying a tradeoff in current LLM fine-tuningmethods between generalisation and diversity. Our results provide guidance onwhich fine-tuning method should be used depending on the application, and showthat more research is needed to improve the tradeoff between generalisation anddiversity.
NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot Speech and Singing Synthesizers
Kai Shen · Zeqian Ju · Xu Tan · Eric Liu · Yichong Leng · Lei He · Tao Qin · sheng zhao · Jiang Bian
Scaling text-to-speech (TTS) to large-scale, multi-speaker, and in-the-wild datasets is important to capture the diversity in human speech such as speaker identities, prosodies, and styles (e.g., singing). Current large TTS systems usually quantize speech into discrete tokens and use language models to generate these tokens one by one, which suffer from unstable prosody, word skipping/repeating issue, and poor voice quality. In this paper, we develop NaturalSpeech 2, a TTS system that leverages a neural audio codec with residual vector quantizers to get the quantized latent vectors and uses a diffusion model to generate these latent vectors conditioned on text input. To enhance the zero-shot capability that is important to achieve diverse speech synthesis, we design a speech prompting mechanism to facilitate in-context learning in the diffusion model and the duration/pitch predictor. We scale NaturalSpeech 2 to large-scale datasets with 44K hours of speech and singing data and evaluate its voice quality on unseen speakers. NaturalSpeech 2 outperforms previous TTS systems by a large margin in terms of prosody/timbre similarity, robustness, and voice quality in a zero-shot setting, and performs novel zero-shot singing synthesis with only a speech prompt. Audio samples are available at https://naturalspeech2.github.io/.
Maximum Entropy Heterogeneous-Agent Reinforcement Learning
Jiarong Liu · Yifan Zhong · Siyi Hu · Haobo Fu · QIANG FU · Xiaojun Chang · Yaodong Yang
Multi-agent reinforcement learning (MARL) has been shown effective for cooperative games in recent years. However, existing state-of-the-art methods face challenges related to sample complexity, training instability, and the risk of converging to a suboptimal Nash Equilibrium. In this paper, we propose a unified framework for learning \emph{stochastic} policies to resolve these issues. We embed cooperative MARL problems into probabilistic graphical models, from which we derive the maximum entropy (MaxEnt) objective for MARL. Based on the MaxEnt framework, we propose Heterogeneous-Agent Soft Actor-Critic (HASAC) algorithm. Theoretically, we prove the monotonic improvement and convergence to quantal response equilibrium (QRE) properties of HASAC. Furthermore, we generalize a unified template for MaxEnt algorithmic design named Maximum Entropy Heterogeneous-Agent Mirror Learning (MEHAML), which provides any induced method with the same guarantees as HASAC. We evaluate HASAC on six benchmarks: Bi-DexHands, Multi-Agent MuJoCo, StarCraft Multi-Agent Challenge, Google Research Football, Multi-Agent Particle Environment, and Light Aircraft Game. Results show that HASAC consistently outperforms strong baselines, exhibiting better sample efficiency, robustness, and sufficient exploration.
Diagnosing Transformers: Illuminating Feature Spaces for Clinical Decision-Making
Aliyah Hsu · Yeshwanth Cherapanamjeri · Briton Park · Tristan Naumann · Anobel Odisho · Bin Yu
Pre-trained transformers are often fine-tuned to aid clinical decision-making using limited clinical notes. Model interpretability is crucial, especially in high-stakes domains like medicine, to establish trust and ensure safety, which requires human engagement. We introduce SUFO, a systematic framework that enhances interpretability of fine-tuned transformer feature spaces. SUFO utilizes a range of analytic and visualization techniques, including Supervised probing, Unsupervised similarity analysis, Feature dynamics, and Outlier analysis to address key questions about model trust and interpretability (e.g. model suitability for a task, feature space evolution during fine-tuning, and interpretation of fine-tuned features and failure modes). We conduct a case study investigating the impact of pre-training data where we focus on real-world pathology classification tasks, and validate our findings on MedNLI. We evaluate five 110M-sized pre-trained transformer models, categorized into general-domain (BERT, TNLR), mixed-domain (BioBERT, Clinical BioBERT), and domain-specific (PubMedBERT) groups. Our SUFO analyses reveal that: (1) while PubMedBERT, the domain-specific model, contains valuable information for fine-tuning, it can overfit to minority classes when class imbalances exist. In contrast, mixed-domain models exhibit greater resistance to overfitting, suggesting potential improvements in domain-specific model robustness; (2) in-domain pre-training accelerates feature disambiguation during fine-tuning; and (3) feature spaces undergo significant sparsification during this process, enabling clinicians to identify common outlier modes among fine-tuned models as demonstrated in this paper. These findings showcase the utility of SUFO in enhancing trust and safety when using transformers in medicine, and we believe SUFO can aid practitioners in evaluating fine-tuned language models (LMs) for other applications in medicine and in more critical domains.
On the Vulnerability of Adversarially Trained Models Against Two-faced Attacks
Shengjie Zhou · Lue Tao · Yuzhou Cao · Tao Xiang · Bo An · Lei Feng
Adversarial robustness is an important standard for measuring the quality of learned models, and adversarial training is an effective strategy for improving the adversarial robustness of models. In this paper, we disclose that adversarially trained models are vulnerable to two-faced attacks, where slight perturbations in input features are crafted to make the model exhibit a false sense of robustness in the verification phase. Such a threat is significantly important as it can mislead our evaluation of the adversarial robustness of models, which could cause unpredictable security issues when deploying substandard models in reality. More seriously, this threat seems to be pervasive and tricky: we find that many types of models suffer from this threat, and models with higher adversarial robustness tend to be more vulnerable. Furthermore, we provide the first attempt to formulate this threat, disclose its relationships with adversarial risk, and try to circumvent it via a simple countermeasure. These findings serve as a crucial reminder for practitioners to exercise caution in the verification phase, urging them to refrain from blindly trusting the exhibited adversarial robustness of models.
DePT: Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning
Zhengxiang Shi · Aldo Lipani
Prompt tuning (PT), where a small amount of trainable soft (continuous) prompt vectors is affixed to the input of language models (LM), has shown promising results across various tasks and models for parameter-efficient fine-tuning (PEFT). PT stands out from other PEFT approaches because it maintains competitive performance with fewer trainable parameters and does not drastically scale up its parameters as the model size expands. However, PT introduces additional soft prompt tokens, leading to longer input sequences, which significantly impacts training and inference time and memory usage due to the Transformer's quadratic complexity. Particularly concerning for Large Language Models (LLMs) that face heavy daily querying. To address this issue, we propose Decomposed Prompt Tuning (DePT), which decomposes the soft prompt into a shorter soft prompt and a pair of low-rank matrices that are then optimised with two different learning rates. This allows DePT to achieve better performance while saving substantial memory and time costs compared to vanilla PT and its variants, without changing trainable parameter sizes. Through extensive experiments on 23 natural language processing (NLP) and vision-language (VL) tasks, we demonstrate that DePT outperforms state-of-the-art PEFT approaches, including the full fine-tuning baseline, in some scenarios. Additionally, we empirically show that DEPT grows more efficient as the model size increases. Our further study reveals that DePT integrates seamlessly with parameter-efficient transfer learning in the few-shot learning setting and highlights its adaptability to various model architectures and sizes.
Cross$Q$: Batch Normalization in Deep Reinforcement Learning for Greater Sample Efficiency and Simplicity
Aditya Bhatt · Daniel Palenicek · Boris Belousov · Max Argus · Artemij Amiranashvili · Thomas Brox · Jan Peters
Sample efficiency is a crucial problem in deep reinforcement learning. Recent algorithms, such as REDQ and DroQ, found a way to improve the sample efficiency by increasing the update-to-data (UTD) ratio to 20 gradient update steps on the critic per environment sample. However, this comes at the expense of a greatly increased computational cost. To reduce this computational burden, we introduce CrossQ: a lightweight algorithm that makes careful use of Batch Normalization and removes target networks to surpass the state-of-the-art in sample efficiency while maintaining a low UTD ratio of 1. Notably, CrossQ does not rely on advanced bias-reduction schemes used in current methods. CrossQ’s contributions are thus threefold: (1) state-of-the-art sample efficiency, (2) substantial reduction in computational cost compared to REDQ and DroQ, and (3) ease of implementation, requiring just a few lines of code on top of SAC.
Adversarial Supervision Makes Layout-to-Image Diffusion Models Thrive
Yumeng Li · Margret Keuper · Dan Zhang · Anna Khoreva
Despite the recent advances in large-scale diffusion models, little progress has been made on the layout-to-image (L2I) synthesis task. Current L2I models either suffer from poor editability via text or weak alignment between the generated image and the input layout. This limits their usability in practice. To mitigate this, we propose to integrate adversarial supervision into the conventional training pipeline of L2I diffusion models (ALDM). Specifically, we employ a segmentation-based discriminator which provides explicit feedback to the diffusion generator on the pixel-level alignment between the denoised image and the input layout. To encourage consistent adherence to the input layout over the sampling steps, we further introduce the multistep unrolling strategy. Instead of looking at a single timestep, we unroll a few steps recursively to imitate the inference process, and ask the discriminator to assess the alignment of denoised images with the layout over a certain time window. Our experiments show that ALDM enables layout faithfulness of the generated images, while allowing broad editability via text prompts. Moreover, we showcase its usefulness for practical applications: by synthesizing target distribution samples via text control, we improve domain generalization of semantic segmentation models by a large margin (~12 mIoU points).
Conditional Variational Diffusion Models
Gabriel della Maggiora · Luis A. Croquevielle · Nikita Deshpande · Harry Horsley · Thomas Heinis · Artur Yakimovich
Inverse problems aim to determine causal factors from observations, a crucial task in engineering and science. Lately, generative models, especially diffusion models, have gained popularity in this area for their ability to produce realistic solutions and their good mathematical properties. Despite their success, an important drawback of diffusion models is their sensitivity to the choice of variance schedule, which controls the dynamics of the diffusion process. Fine-tuning this schedule for specific applications is crucial but time-costly, and does not guarantee an optimal result. We propose a novel approach for learning the schedule as part of the training process. Our method supports probabilistic conditioning on data, provides high-quality solutions, and is flexible, proving able to adapt to different applications with minimum overhead. This approach is tested in two unrelated inverse problems: super-resolution microscopy and quantitative phase imaging, yielding comparable or superior results to previous methods and fine-tuned diffusion models. We conclude that fine-tuning the schedule by experimentation should be avoided because it can be learned during training in a stable way that yields better results.
Are Bert Family Good Instruction Followers? A Study on Their Potential And Limitations
yisheng xiao · Zechen Sun · Juntao Li · Min Zhang · Zechang Li · Qingrong Xia · Xinyu Duan · Zhefeng Wang
Language modeling at scale has proven very effective and brought unprecedented success to natural language models. Many typical representatives, especially decoder-only models, e.g., BLOOM and LLaMA, and encoder-decoder models, e.g., Flan-T5 and AlexaTM, have exhibited incredible instruction-following capabilities while keeping strong task completion ability. These large language models can achieve superior performance in various tasks and even yield emergent capabilities, e.g., reasoning and universal generalization. Though the above two paradigms are mainstream and well explored, the potential of the BERT family, which are encoder-only based models and have ever been one of the most representative pre-trained models, also deserves attention, at least should be discussed. In this work, we adopt XML-R to explore the effectiveness of the BERT family for instruction following and zero-shot learning. We first design a simple yet effective strategy to utilize the encoder-only models for generation tasks and then conduct multi-task instruction tuning. Experimental results demonstrate that our fine-tuned model, Instruct-XMLR, outperforms Bloomz on all evaluation tasks and achieves comparable performance with mT0 on most tasks. Surprisingly, Instruct-XMLR also possesses strong task and language generalization abilities, indicating that Instruct-XMLR can also serve as a good instruction follower and zero-shot learner. Besides, Instruct-XMLR can accelerate decoding due to its non-autoregressive generation manner, achieving around 3 times speedup compared with current autoregressive large language models. Although we also witnessed several limitations through our experiments, such as the performance decline in long-generation tasks and the shortcoming of length prediction, Instruct-XMLR can still become a good member of the family of current large language models.
Towards 3D Molecule-Text Interpretation in Language Models
Sihang Li · Zhiyuan Liu · Yanchen Luo · Xiang Wang · Xiangnan He · Kenji Kawaguchi · Tat-Seng Chua · Qi Tian
Language Models (LMs) have greatly influenced diverse domains. However, their inherent limitation in comprehending 3D molecular structures has considerably constrained their potential in the biomolecular domain. To bridge this gap, we focus on 3D molecule-text interpretation, and propose 3D-MoLM: 3D-Molecular Language Modeling. Specifically, 3D-MoLM enables an LM to interpret andanalyze 3D molecules by equipping the LM with a 3D molecular encoder. This integration is achieved by a 3D molecule-text projector, bridging the 3D molecular encoder’s representation space and the LM’s input space. Moreover, to enhance 3DMoLM’s ability of cross-modal molecular understanding and instruction following, we meticulously curated a 3D molecule-centric instruction tuning dataset – 3D-MoIT. Through 3D molecule-text alignment and 3D molecule-centric instruction tuning, 3D-MoLM establishes an integration of 3D molecular encoder and LM. It significantly surpasses existing baselines on downstream tasks, including moleculetext retrieval, molecule captioning, and more challenging open-text molecular QA tasks, especially focusing on 3D-dependent properties. We will release our codes and datasets at https://anonymous.4open.science/r/3D-MoLM.
Improving Intrinsic Exploration by Creating Stationary Objectives
Roger Creus Castanyer · Joshua Romoff · Glen Berseth
Exploration bonuses in reinforcement learning guide long-horizon exploration by defining custom intrinsic objectives. Count-based methods use the frequency of state visits to derive an exploration bonus. In this paper, we identify that any intrinsic reward function derived from count-based methods is non-stationary and hence induces a difficult objective to optimize for the agent. The key contribution of our work lies in transforming the original non-stationary rewards into stationary rewards through an augmented state representation. For this purpose, we introduce the Stationary Objectives For Exploration (SOFE) framework. SOFE requires identifying sufficient statistics for different exploration bonuses and finding an efficient encoding of these statistics to use as input to a deep network. SOFE is based on proposing state augmentations that expand the state space but hold the promise of simplifying the optimization of the agent's objective. Our experiments show that SOFE improves the agents' performance in challenging exploration problems, including sparse-reward tasks, pixel-based observations, 3D navigation, and procedurally generated environments.
Ensemble Distillation for Unsupervised Constituency Parsing
Behzad Shayegh · Yanshuai Cao · Xiaodan Zhu · Jackie Cheung · Lili Mou
We investigate the unsupervised constituency parsing task, which organizes words and phrases of a sentence into a hierarchical structure without using linguistically annotated data. We observe that existing unsupervised parsers capture differing aspects of parsing structures, which can be leveraged to enhance unsupervised parsing performance.To this end, we propose a notion of ``tree averaging,'' based on which we further propose a novel ensemble method for unsupervised parsing.To improve inference efficiency, we further distill the ensemble knowledge into a student model; such an ensemble-then-distill process is an effective approach to mitigate the over-smoothing problem existing in common multi-teacher distilling methods.Experiments show that our method surpasses all previous approaches, consistently demonstrating its effectiveness and robustness across various runs, with different ensemble components, and under domain-shift conditions.
Fast and unified path gradient estimators for normalizing flows
Lorenz Vaitl · Ludwig Winkler · Lorenz Richter · Pan Kessel
Recent work shows that path gradient estimators for normalizing flows have lower variance compared to standard estimators, resulting in improved training. However, they are often prohibitively more expensive from a computational point of view and cannot be applied to maximum likelihood training in a scalable manner, which severely hinders their widespread adoption. In this work, we overcome these crucial limitations. Specifically, we propose a fast path gradient estimator which works for all normalizing flow architectures of practical relevance for sampling from an unnormalized target distribution. We then show that this estimator can also be applied to maximum likelihood training and empirically establish its superior performance for several natural sciences applications.
MetaCoCo: A New Few-Shot Classification Benchmark with Spurious Correlation
Min Zhang · Chunyuan Zheng · Fei Wu · Kun Kuang
Out-of-distribution (OOD) problems in few-shot classification (FSC) occur when novel classes sampled from testing distributions differ from base classes drawn from training distributions, which considerably degrades the performance of deep learning models deployed in real-world applications. Recent studies suggest that the OOD problems in FSC mainly including: (a) cross-domain few-shot classification (CD-FSC) and (b) spurious-correlation few-shot classification (SC-FSC). Specifically, CD-FSC occurs when a classifier learns transferring knowledge from base classes drawn from \underline{seen} training distributions but recognizes novel classes sampled from unseen testing distributions. In contrast, SC-FSC arises when a classifier relies on non-causal features (or contexts) that happen to be correlated with the labels (or concepts) in base classes but such relationships no longer hold during the model deployment. Despite CD-FSC has been extensively studied, SC-FSC remains understudied due to lack of the corresponding evaluation benchmarks. To this end, we present Meta Concept Context (MetaCoCo), a benchmark with spurious-correlation shifts collected from real-world scenarios. Moreover, to quantify the extent of spurious-correlation shifts of the presented MetaCoCo, we further propose a metric by using CLIP as a pre-trained vision-language model. Extensive experiments on the proposed benchmark are performed to evaluate the state-of-the-art methods in FSC, cross-domain shifts, and self-supervised learning. The experimental results show that the performance of the existing methods degrades significantly in the presence of spurious-correlation shifts. We open-source all codes of our benchmark and hope that the proposed MetaCoCo can facilitate future research on spurious-correlation shifts problems in FSC.
Recently, hypergraph neural networks (HGNNs) exhibit the potential to tackle tasks with high-order correlations and have achieved success in many tasks. However, existing evolution on the hypergraph has poor controllability and lacks sufficient theoretical support (like dynamic systems), thus yielding sub-optimal performance.One typical scenario is that only one or two layers of HGNNs can achieve good results and more layers lead to degeneration of performance.Under such circumstances, it is important to increase the controllability of HGNNs.In this paper, we first introduce hypergraph dynamic systems (HDS), which bridge hypergraphs and dynamic systems and characterize the continuous dynamics of representations.We then propose a control-diffusion hypergraph dynamic system by an ordinary differential equation (ODE).We design a multi-layer HDS$^{ode}$ as a neural implementation, which contains control steps and diffusion steps.HDS$^{ode}$ has the properties of controllability and stabilization and is allowed to capture long-range correlations among vertices.Experiments on $7$ datasets demonstrate HDS$^{ode}$ beat all compared methods.HDS$^{ode}$ achieves stable performance with increased layers and solves the poor controllability of HGNNs.We also provide the feature visualization of the evolutionary process to demonstrate the controllability and stabilization of HDS$^{ode}$.
DataInf: Efficiently Estimating Data Influence in LoRA-tuned LLMs and Diffusion Models
Yongchan Kwon · Eric Wu · Kevin Wu · James Y Zou
Quantifying the impact of training data points is crucial for understanding the outputs of machine learning models and for improving the transparency of the AI pipeline. The influence function is a principled and popular data attribution method, but its computational cost often makes it challenging to use. This issue becomes more pronounced in the setting of large language models and text-to-image models. In this work, we propose DataInf, an efficient influence approximation method that is practical for large-scale generative AI models. Leveraging an easy-to-compute closed-form expression, DataInf outperforms existing influence computation algorithms in terms of computational and memory efficiency. Our theoretical analysis shows that DataInf is particularly well-suited for parameter-efficient fine-tuning techniques such as LoRA. Through systematic empirical evaluations, we show that DataInf accurately approximates influence scores and is orders of magnitude faster than existing methods. In applications to RoBERTa-large, Llama-2-13B-chat, and stable-diffusion-v1.5 models, DataInf effectively identifies the most influential fine-tuning examples better than other approximate influence scores. Moreover, it can help to identify which data points are mislabeled.
fairret: a Framework for Differentiable Fairness Regularization Terms
Maarten Buyl · MaryBeth Defrance · Tijl De Bie
Current tools for machine learning fairness only admit a limited range of fairness definitions and have seen little integration with automatic differentiation libraries, despite the central role these libraries play in modern machine learning pipelines.We introduce a framework of fairness regularization terms (fairret) which quantify bias as modular objectives that are easily integrated in automatic differentiation pipelines. By employing a general definition of fairness in terms of linear-fractional statistics, a wide class of fairrets can be computed efficiently. Experiments show the behavior of their gradients and their utility in enforcing fairness with minimal loss of predictive power compared to baselines. Our contribution includes a PyTorch implementation of the fairret framework.
SequenceMatch: Imitation Learning for Autoregressive Sequence Modelling with Backtracking
Chris Cundy · Stefano Ermon
In many domains, autoregressive models can attain high likelihood on the task of predicting the next observation. However, this maximum-likelihood (MLE) objective does not necessarily match a downstream use-case of autoregressively generating high-quality sequences. The MLE objective weights sequences proportionally to their frequency under the data distribution, with no guidance for the model's behaviour out of distribution (OOD): leading to compounding error during autoregressive generation. In order to address this compounding error problem, we formulate sequence generation as an imitation learning (IL) problem. This allows us to minimize a variety of divergences between the distribution of sequences generated by an autoregressive model and sequences from a dataset, including divergences with weight on OOD generated sequences. The IL framework also allows us to incorporate backtracking by introducing a backspace action into the generation process. This further mitigates the compounding error problem by allowing the model to revert a sampled token if it takes the sequence OOD. Our resulting method, SequenceMatch, can be implemented without adversarial training or major architectural changes. We identify the SequenceMatch-χ2 divergence as a more suitable training objective for autoregressive models which are used for generation. We show that empirically, SequenceMatch training leads to improvements over MLE on text generation with language models and arithmetic
Safe RLHF: Safe Reinforcement Learning from Human Feedback
Juntao Dai · Xuehai Pan · Ruiyang Sun · Jiaming Ji · Xinbo Xu · Mickel Liu · Yizhou Wang · Yaodong Yang
With the development of large language models (LLMs), striking a balance between the performance and safety of AI systems has never been more critical. However, the inherent tension between the objectives of helpfulness and harmlessness presents a significant challenge during LLM training. To address this issue, we propose Safe Reinforcement Learning from Human Feedback (Safe RLHF), a novel algorithm for human value alignment. Safe RLHF explicitly decouples human preferences regarding helpfulness and harmlessness, effectively avoiding the crowd workers' confusion about the tension and allowing us to train separate reward and cost models. We formalize the safety concern of LLMs as an optimization task of maximizing the reward function while satisfying specified cost constraints. Leveraging the Lagrangian method to solve this constrained problem, Safe RLHF dynamically adjusts the balance between the two objectives during fine-tuning. Through a three-round fine-tuning using Safe RLHF, we demonstrate a superior ability to mitigate harmful responses while enhancing model performance compared to existing value-aligned algorithms. Experimentally, we fine-tuned the Alpaca-7B using Safe RLHF and aligned it with collected human preferences, significantly improving its helpfulness and harmlessness according to human evaluations.Warning: This paper contains example data that may be offensive or harmful.
From Bricks to Bridges: Product of Invariances to Enhance Latent Space Communication
Irene Cannistraci · Luca Moschella · Marco Fumero · Valentino Maiorca · Emanuele Rodolà
It has been observed that representations learned by distinct neural networks conceal structural similarities when the models are trained under similar inductive biases. From a geometric perspective, identifying the classes of transformations and the related invariances that connect these representations is fundamental to unlocking applications, such as merging, stitching, and reusing different neural modules. However, estimating task-specific transformations a priori can be challenging and expensive due to several factors (e.g., weights initialization, training hyperparameters, or data modality). To this end, we introduce a versatile method to directly incorporate a set of invariances into the representations, constructing a product space of invariant components on top of the latent representations without requiring prior knowledge about the optimal invariance to infuse. We validate our solution on classification and reconstruction tasks, observing consistent latent similarity and downstream performance improvements in a zero-shot stitching setting. The experimental analysis comprises three modalities (vision, text, and graphs), twelve pretrained foundational models, eight benchmarks, and several architectures trained from scratch.
Towards Poisoning Fair Representations
Tianci Liu · Haoyu Wang · Feijie Wu · Hengtong Zhang · Pan Li · Lu Su · Jing Gao
Fair machine learning seeks to mitigate model prediction bias against certain demographic subgroups such as elder and female. Recently, fair representation learning (FRL) trained by deep neural networks has demonstrated superior performance, whereby representations containing no demographic information are inferred from the data and then used as the input to classification or other downstream tasks. Despite the development of FRL methods, their vulnerability under data poisoning attack, a popular protocol to benchmark model robustness under adversarial scenarios, is under-explored. Data poisoning attacks have been developed for classical fair machine learning methods which incorporate fairness constraints into shallow-model classifiers.Nonetheless, these attacks fall short in FRL due to notably different fairness goals and model architectures. This work proposes the first data poisoning framework attacking FRL. We induce the model to output unfair representations that contain as much demographic information as possible by injecting carefully crafted poisoning samples into the training data.This attack entails a prohibitive bilevel optimization, wherefore an effective approximated solution is proposed. A theoretical analysis on the needed number of poisoning samples is derived and sheds light on defending against the attack. Experiments on benchmark fairness datasets and state-of-the-art fair representation learning models demonstrate the superiority of our attack.
The Trickle-down Impact of Reward Inconsistency on RLHF
Lingfeng Shen · Sihao Chen · Linfeng Song · Lifeng Jin · Baolin Peng · Haitao Mi · Daniel Khashabi · Dong Yu
Standard practice within Reinforcement Learning from Human Feedback (RLHF) involves optimizing against a Reward Model (RM), which itself is trained to reflect human preferences for desirable generations. A notable subject that is understudied is the (in-)consistency of RMs --- whether they can recognize the semantic changes to different prompts and appropriately adapt their reward assignments--- and their impact on the downstream RLHF model.In this paper, we visit a series of research questions relevant to RM inconsistency:(1) How can we measure the consistency of reward models? (2) How consistent are the existing RMs and how can we improve them? (3) In what ways does reward inconsistency influence the chatbots resulting from the RLHF model training?We propose Contrast Instruction -- a benchmarking strategy for the consistency of RM. Each example in Contrast Instruction features a pair of lexically similar instructions with different ground truth responses. A consistent RM is expected to rank the corresponding instruction and response higher than other combinations. We observe that current RMs trained with the standard ranking objective fail miserably on \contrast{} compared to average humans. To show that RM consistency can be improved efficiently without using extra training budget, we propose two techniques ConvexDA and RewardFusion, which enhance reward consistency through extrapolation during the RM training and inference stage, respectively.We show that RLHF models trained with a more consistent RM yield more useful responses, suggesting that reward inconsistency exhibits a trickle-down effect on the downstream RLHF process.
Reclaiming the Source of Programmatic Policies: Programmatic versus Latent Spaces
Tales Carvalho · Kenneth Tjhia · Levi Lelis
Recent works have introduced LEAPS and HPRL, systems that learn latent spaces of domain-specific languages, which are used to define programmatic policies for partially observable Markov decision processes (POMDPs). These systems induce a latent space while optimizing losses such as the behavior loss, which aim to achieve locality in program behavior, meaning that vectors close in the latent space should correspond to similarly behaving programs. In this paper, we show that the programmatic space, induced by the domain-specific language and requiring no training, presents values for the behavior loss similar to those observed in latent spaces presented in previous work. Moreover, algorithms searching in the programmatic space significantly outperform those in LEAPS and HPRL. To explain our results, we measured the ``friendliness'' of the two spaces to local search algorithms. We discovered that algorithms are more likely to stop at local maxima when searching in the latent space than when searching in the programmatic space. This implies that the optimization topology of the programmatic space, induced by the reward function in conjunction with the neighborhood function, is more conducive to search than that of the latent space. This result provides an explanation for the superior performance in the programmatic space.
EventRPG: Event Data Augmentation with Relevance Propagation Guidance
Mingyuan Sun · Donghao Zhang · Zongyuan Ge · Jiaxu Wang · Jia Li · Zheng Fang · Renjing Xu
Event camera, a novel bio-inspired vision sensor, has drawn a lot of attention for its low latency, low power consumption, and high dynamic range. Currently, overfitting remains a critical problem in event-based classification tasks for SNN due to its relatively weak spatial representation capability. Data augmentation is a simple but efficient method to alleviate overfitting and improve the generalization ability of neural networks, and saliency-based augmentation methods are proven to be effective in the image processing field. However, there is no approach available for extracting saliency maps from SNNs. Therefore, for the first time, we present Spiking Layer-Time-wise Relevance Propagation rule (\texttt{SLTRP}) and Spiking Layer-wise Relevance Propagation rule (\texttt{SLRP}) in order for SNN to generate stable and accurate CAM and saliency maps. Based on this, we propose \texttt{EventRPG}, which leverages relevance propagation on the spiking neural network for more efficient augmentation. Our proposed method has been evaluated on several SNN structures, achieving state-of-the-art performance in object recognition tasks including N-Caltech101, CIFAR10-DVS, with accuracies of $85.62\%$ and $85.55\%$, as well as action recognition task SL-Animals with an accuracy of $91.59\%$. Codes will be available soon.
On Double Descent in Reinforcement Learning with LSTD and Random Features
David Brellmann · Eloïse Berthier · David Filliat · Goran Frehse
Temporal Difference (TD) algorithms are widely used in Deep Reinforcement Learning (RL). Their performance is heavily influenced by the size of the neural network. While in supervised learning, the regime of over-parameterization and its benefits are well understood, the situation in RL is much less clear. In this paper, we present a theoretical analysis of the influence of network size and $l_2$-regularization on performance. We identify the ratio between the number of parameters and the number of visited states as a crucial factor and define over-parameterization as the regime when it is larger than one. Furthermore, we observe a double descent phenomenon, i.e., a sudden drop in performance around the parameter/state ratio of one. Leveraging random features and the lazy training regime, we study the regularized Least-Square Temporal Difference (LSTD) algorithm in an asymptotic regime, as both the number of parameters and states go to infinity, maintaining a constant ratio. We derive deterministic limits of both the empirical and the true Mean-Squared Bellman Error (MSBE) that feature correction terms responsible for the double descent. Correction terms vanish when the $l_2$-regularization is increased or the number of unvisited states goes to zero. Numerical experiments with synthetic and small real-world environments closely match the theoretical predictions.
Recently, neural networks have been extensively employed to solve partial differential equations (PDEs) in physical system modeling. While major studies focus on learning system evolution on predefined static mesh discretizations, some methods utilize reinforcement learning or supervised learning techniques to create adaptive and dynamic meshes, due to the dynamic nature of these systems. However, these approaches face two primary challenges: (1) the need for expensive optimal mesh data, and (2) the change of the solution space's degree of freedom and topology during mesh refinement. To address these challenges, this paper proposes a neural PDE solver with a neural mesh adapter. To begin with, we introduce a novel data-free neural mesh adaptor, called Data-free Mesh Mover (DMM), with two main innovations. Firstly, it is an operator that maps the solution to adaptive meshes and is trained using the Monge-Ampère equation without optimal mesh data. Secondly, it dynamically changes the mesh by moving existing nodes rather than adding or deleting nodes and edges. Theoretical analysis shows that meshes generated by DMM have the lowest interpolation error bound. Based on DMM, to efficiently and accurately model dynamic systems, we develop a moving mesh based neural PDE solver (MM-PDE) that embeds the moving mesh with a two-branch architecture and a learnable interpolation framework to preserve information within the data. Empirical experiments demonstrate that our method generates suitable meshes and considerably enhances accuracy when modeling widely considered PDE systems. The code can be found at: https://github.com/Peiyannn/MM-PDE.git.
GOAt: Explaining Graph Neural Networks via Graph Output Attribution
Shengyao Lu · Keith G Mills · Jiao He · Bang Liu · Di Niu
Understanding the decision-making process of Graph Neural Networks (GNNs) is crucial to their interpretability. Most existing methods for explaining GNNs typically rely on training auxiliary models, resulting in the explanations remain black-boxed. This paper introduces Graph Output Attribution (GOAt), a novel method to attribute graph outputs to input graph features, creating GNN explanations that are faithful, discriminative, as well as stable across similar samples. By expanding the GNN as a sum of scalar products involving node features, edge features and activation patterns, we propose an efficient analytical method to compute contribution of each node or edge feature to each scalar product and aggregate the contributions from all scalar products in the expansion form to derive the importance of each node and edge. Through extensive experiments on synthetic and real-world data, we show that our method not only outperforms various state-of-the-art GNN explainers in terms of the commonly used fidelity metric, but also exhibits stronger discriminability, and stability by a remarkable margin.
Vanishing Gradients in Reinforcement Finetuning of Language Models
Noam Razin · Hattie Zhou · Omid Saremi · Vimal Thilak · Arwen Bradley · Preetum Nakkiran · Joshua Susskind · Etai Littwin
Pretrained language models are commonly aligned with human preferences and downstream tasks via reinforcement finetuning (RFT), which refers to maximizing a (possibly learned) reward function using policy gradient algorithms. This work identifies a fundamental optimization obstacle in RFT: we prove that the expected gradient for an input vanishes when its reward standard deviation under the model is small, even if the expected reward is far from optimal. Through experiments on an RFT benchmark and controlled environments, as well as a theoretical analysis, we then demonstrate that vanishing gradients due to small reward standard deviation are prevalent and detrimental, leading to extremely slow reward maximization. Lastly, we explore ways to overcome vanishing gradients in RFT. We find the common practice of an initial supervised finetuning (SFT) phase to be the most promising candidate, which sheds light on its importance in an RFT pipeline. Moreover, we show that a relatively small number of SFT optimization steps on as few as 1% of the input samples can suffice, indicating that the initial SFT phase need not be expensive in terms of compute and data labeling efforts. Overall, our results emphasize that being mindful for inputs whose expected gradient vanishes, as measured by the reward standard deviation, is crucial for successful execution of RFT.
CircuitNet 2.0: An Advanced Dataset for Promoting Machine Learning Innovations in Realistic Chip Design Environment
Xun Jiang · zhuomin chai · Yuxiang Zhao · Yibo Lin · Runsheng Wang · Ru Huang
Integrated circuits or chips are key to enable computing in modern industry. Designing a chip relies on human experts to produce chip data through professional electronic design automation (EDA) software and complicated procedures. Nowadays, prompted by the wide variety of machine learning (ML) datasets, we have witnessed great advancement of ML algorithms in computer vision, natural language processing, and other fields. However, in chip design, high human workload and data sensitivity cause the lack of public datasets, which hinders the progress of ML development for EDA. To this end, we introduce an advanced large-scale dataset, CircuitNet 2.0, which targets promoting ML innovations in a realistic chip design environment. In order to approach the realistic chip design space, we collect more than 10,000 samples with a variety of chip designs (e.g., CPU, GPU, and AI Chip). All the designs are conducted through complete commercial design flows in a widely-used technology node, 14nm FinFET. We collect comprehensive data, including routability, timing, and power, from the design flow to support versatile ML tasks in EDA. Besides, we also introduce some realistic ML tasks with CircuitNet 2.0 to verify the potential for boosting innovations.
Adaptive Regret for Bandits Made Possible: Two Queries Suffice
Zhou Lu · Qiuyi Zhang · Xinyi Chen · Fred Zhang · David Woodruff · Elad Hazan
Fast changing states or volatile environments pose a significant challenge to online optimization, which needs to perform rapid adaptation under limited observation. In this paper, we give query and regret optimal bandit algorithms under the strict notion of strongly adaptive regret, which measures the maximum regret over any contiguous interval $I$. Due to its worst-case nature, there is an almost-linear $\Omega(|I|^{1-\epsilon})$ regret lower bound, when only one query per round is allowed [Daniely el al, ICML 2015]. Surprisingly, with just two queries per round, we give Strongly Adaptive Bandit Learner (StABL) that achieves $\widetilde{O}(\sqrt{n|I|})$ adaptive regret for multi-armed bandits with $n$ arms. The bound is tight and cannot be improved in general. Our algorithm leverages a multiplicative update scheme of varying stepsizes and a carefully chosen observation distribution to control the variance. Furthermore, we extend our results and provide optimal algorithms in the bandit convex optimization setting. Finally, we empirically demonstrate the superior performance of our algorithms under volatile environments and for downstream tasks, such as algorithm selection for hyperparameter optimization.
Score-based generative models break the curse of dimensionality in learning a family of sub-Gaussian distributions
Frank Cole · Yulong Lu
While score-based generative models (SGMs) have achieved remarkable successes in enormous image generation tasks, their mathematical foundations are still limited. In this paper, we analyze the approximation and generalization of SGMs in learning a family of sub-Gaussian probability distributions. We introduce a measure of complexity for probability distributions in terms of their relative density with respect to the standard Gaussian measure. We prove that if the log-relative density can be locally approximated by a neural network whose parameters can be suitably bounded, then the distribution generated by empirical score matching approximates the target distribution in total variation with a dimension-independent rate. We illustrate our theory through examples, which include certain mixtures of Gaussians. An essential ingredient of our proof is to derive a dimension-free deep network approximation rate for the true score function associated to the forward process, which is interesting in its own right.
Guess & Sketch: Language Model Guided Transpilation
Celine Lee · Abdulrahman Mahmoud · Michal Kurek · Simone Campanoni · Gu-Yeon Wei · Stephen Chong · Gu-Yeon Wei · Alexander Rush
Maintaining legacy software requires many software and systems engineering hours. Assembly code programs, which demand low-level control over the computer machine state and have no variable names, are particularly difficult for humans to analyze.Existing conventional program translators guarantee correctness, but are hand-engineered for the source and target programming languages in question. Learned transpilation, i.e. automatic translation of code, offers an alternative to manual re-writing and engineering efforts. Automated symbolic program translation approaches guarantee correctness but struggle to scale to longer programs due to the exponentially large search space. Their rigid rule-based systems also limit their expressivity, so they can only reason about a reduced space of programs. Probabilistic neural language models (LMs) produce plausible outputs for every input, but do so at the cost of guaranteed correctness. In this work, we leverage the strengths of LMs and symbolic solvers in a neurosymbolic approach to learned transpilation for assembly code. Assembly code is an appropriate setting for a neurosymbolic approach, since assembly code can be divided into shorter non-branching basic blocks amenable to the use of symbolic methods. Guess & Sketch extracts alignment and confidence information from features of the LM then passes it to a symbolic solver to resolve semantic equivalence of the transpilation input and output. We test Guess & Sketch on three different test sets of assembly transpilation tasks, varying in difficulty, and show that it successfully transpiles 57.6% more examples than GPT-4 and 39.6% more examples than an engineered transpiler. We also share a training and evaluation dataset for this task.
Compositional Conservatism: A Transductive Approach in Offline Reinforcement Learning
Yeda Song · Dongwook Lee · Gunhee Kim
Offline Reinforcement learning (RL) is a compelling framework for learning optimal policies without additional environmental interaction. Nevertheless, offline RL inevitably faces the problem of distributional shifts, where the states and actions encountered during policy execution are not in the training dataset. A common solution involves incorporating conservatism into either the policy or value function, which serves as a safeguard against uncertainties and unknowns. In this paper, we also focus on achieving the same objectives of conservatism but from a different perspective. We propose COmpositional COnservatism with Anchor-seeking ($\text{\textit{COCOA}}$) for offline RL, an approach that pursues conservatism in a compositional manner on top of the transductive reparameterization (Netanyahuet al., 2023). In this reparameterization, the input variable (the state in our case) is viewed as the combination of an anchor and its difference from the original input. Independently of and agnostically to the prevalent $\text{\textit{behavioral}}$ conservatism in offline RL, COCOA learns to seek both in-distribution anchors and differences with the learned dynamics model, encouraging conservatism in the $\text{\textit{compositional input space}}$ for the function approximators of the Q-function and policy.Our experimental results show that our method generally improves the performance of four state-of-the-art offline RL algorithms on the D4RL benchmark.
On the Hardness of Online Nonconvex Optimization with Single Oracle Feedback
Ziwei Guan · Yi Zhou · Yingbin Liang
Online nonconvex optimization has been an active area of research recently. Previous studies either considered the global regret with full information about the objective functions, or studied the local regret with window-smoothed objective functions, which required access to unlimited number of gradient oracles per time step. In this paper, we focus on the more challenging and practical setting, where access to only a single oracle is allowed per time step, and take the local regret of the original (i.e., unsmoothed) objective functions as the performance metric. Specifically, for both settings respectively with a single exact and stochastic gradient oracle feedback, we derive lower bounds on the local regret and show that the classical online (stochastic) gradient descent algorithms are optimal. Moreover, for the more challenging setting with a single function value oracle feedback, we develop an online algorithm based on a one-point running difference gradient estimator, and show that such an algorithm achieves a local regret that a generic stochastic gradient oracle can best achieve.
TabR: Tabular Deep Learning Meets Nearest Neighbors
Yury Gorishniy · Ivan Rubachev · Nikolay Kartashev · Daniil Shlenskii · Akim Kotelnikov · Artem Babenko
Deep learning (DL) models for tabular data problems (e.g. classification, regression) are currently receiving increasingly more attention from researchers.However, despite the recent efforts, the non-DL algorithms based on gradient-boosted decision trees (GBDT) remain a strong go-to solution for these problems.One of the research directions aimed at improving the position of tabular DL involves designing so-called retrieval-augmented models.For a target object, such models retrieve other objects (e.g. the nearest neighbors) from the available training data and use their features and labels to make a better prediction.In this work, we present TabR -- essentially, a feed-forward network with a custom k-Nearest-Neighbors-like component in the middle.On a set of public benchmarks with datasets up to several million objects, TabR marks a big step forward for tabular DL: it demonstrates the best average performance among tabular DL models, becomes the new state-of-the-art on several datasets, and even outperforms GBDT models on the recently proposed "GBDT-friendly" benchmark (see Figure 1).Among the important findings and technical details powering TabR, the main ones lie in the attention-like mechanism that is responsible for retrieving the nearest neighbors and extracting valuable signal from them.In addition to the higher performance, TabR is simple and significantly more efficient compared to prior retrieval-based tabular DL models.
Improving Convergence and Generalization Using Parameter Symmetries
Bo Zhao · Robert M. Gower · Robin Walters · Rose Yu
In overparametrized models, different values of the parameters may result in the same loss value. Parameter space symmetries are loss-invariant transformations that change the model parameters. Teleportation applies such transformations to accelerate optimization. However, the exact mechanism behind this algorithm's success is not well understood. In this paper, we show that teleportation not only speeds up optimization in the short-term, but gives overall faster time to convergence. Additionally, teleporting to minima with different curvatures improves generalization, which suggests a connection between the curvature of the minima and generalization ability. Finally, we show that integrating teleportation into a wide range of optimization algorithms and optimization-based meta-learning improves convergence. Our results showcase the versatility of teleportation and demonstrate the potential of incorporating symmetry in optimization.
The Reasonableness Behind Unreasonable Translation Capability of Large Language Model
Tingchen Fu · lemao liu · Deng Cai · Guoping Huang · Shuming Shi · Rui Yan
Multilingual large language models trained on non-parallel data yield impressive translation capabilities. Existing studies demonstrate that incidental sentence-level bilingualism within pre-training data contributes to the LLM's translation abilities. However, it has also been observed that LLM's translation capabilities persist even when incidental sentence-level bilingualism are excluded from the training corpus.In this study, we comprehensively investigate the unreasonable effectiveness and the underlying mechanism for LLM's translation abilities, specifically addressing the question why large language models learn to translate without parallel data, using the BLOOM model series as a representative example. Through extensive experiments, our findings suggest the existence of unintentional bilingualism in the pre-training corpus, especially word alignment data significantly contributes to the large language model's acquisition of translation ability. Moreover, the translation signal derived from word alignment data is comparable to that from sentence-level bilingualism. Additionally, we study the effects of monolingual data and parameter-sharing in assisting large language model to learn to translate. Together, these findings present another piece of the broader puzzle of trying to understand how large language models acquire translation capability.
Linear Log-Normal Attention with Unbiased Concentration
Yury Nahshan · Joseph Kampeas · Emir Haleva
Transformer models have achieved remarkable results in a wide range of applications. However, their scalability is hampered by the quadratic time and memory complexity of the self-attention mechanism concerning the sequence length. This limitation poses a substantial obstacle when dealing with long documents or high-resolution images. In this work, we study the self-attention mechanism by analyzing the distribution of the attention matrix and its concentration ability. Furthermore, we propose instruments to measure these quantities and introduce a novel self-attention mechanism, Linear Log-Normal Attention, designed to emulate the distribution and concentration behavior of the original self-attention. Our experimental results on popular natural language benchmarks reveal that our proposed Linear Log-Normal Attention outperforms other linearized attention alternatives, offering a promising avenue for enhancing the scalability of transformer models. Our code is available in supplementary materials.
On the Posterior Distribution in Denoising: Application to Uncertainty Quantification
Hila Manor · Tomer Michaeli
Denoisers play a central role in many applications, from noise suppression in low-grade imaging sensors, to empowering score-based generative models. The latter category of methods makes use of Tweedie's formula, which links the posterior mean in Gaussian denoising (i.e., the minimum MSE denoiser) with the score of the data distribution. Here, we derive a fundamental relation between the higher-order central moments of the posterior distribution, and the higher-order derivatives of the posterior mean. We harness this result for uncertainty quantification of pre-trained denoisers. Particularly, we show how to efficiently compute the principal components of the posterior distribution for any desired region of an image, as well as to approximate the full marginal distribution along those (or any other) one-dimensional directions. Our method is fast and memory-efficient, as it does not explicitly compute or store the high-order moment tensors and it requires no training or fine tuning of the denoiser. Code and examples are available on the project website.
MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process
Xinyao Fan · Yueying Wu · XU · Yu-Hao Huang · Weiqing Liu · Jiang Bian
Recently, diffusion probabilistic models have attracted attention in generative time series forecasting due to their remarkable capacity to generate high-fidelity samples. However, the effective utilization of their strong modeling ability in the probabilistic time series forecasting task remains an open question, partially due to the challenge of instability arising from their stochastic nature. To address this challenge, we introduce a novel Multi-Granularity Time Series Diffusion (MG-TSD) model, which achieves state-of-the-art predictive performance by leveraging the inherent granularity levels within the data as given targets at intermediate diffusion steps to guide the learning process of diffusion models. The way to construct the targets is motivated by the observation that forward process of the diffusion model, which sequentially corrupts the data distribution to a standard normal distribution, intuitively aligns with the process of smoothing fine-grained data into a coarse-grained representation, both of which result in a gradual loss of fine distribution features. In the study, we derive a novel multi-granularity guidance diffusion loss function and propose a concise implementation method to effectively utilize coarse-grained data across various granularity levels.More importantly, our approach does not rely on additional external data, making it versatile and applicable across various domains. Extensive experiments conducted on real-world datasets demonstrate that our MG-TSD model outperforms existing time series prediction methods.
Accurate Forgetting for Heterogeneous Federated Continual Learning
Abudukelimu Wuerkaixi · Sen Cui · Jingfeng Zhang · Kunda Yan · Bo Han · Gang Niu · Lei Fang · Changshui Zhang · Masashi Sugiyama
Recent years have witnessed a burgeoning interest in federated learning (FL).However, the contexts in which clients engage in sequential learning remain under-explored.Bridging FL and continual learning (CL) gives rise to a challenging practical problem: federated continual learning (FCL).Existing research in FCL primarily focuses on mitigating the catastrophic forgetting issue of continual learning while collaborating with other clients. We argue that the forgetting phenomena are not invariably detrimental.In this paper, we consider a more practical and challenging FCL setting characterized by potentially unrelated or even antagonistic data/tasks across different clients.In the FL scenario, statistical heterogeneity and data noise among clients may exhibit spurious correlations which result in biased feature learning.While existing CL strategies focus on a complete utilization of previous knowledge, we found that forgetting biased information is beneficial in our study. Therefore, we propose the new concept accurate forgetting (AF) and develop a novel generative-replay method AF-FCL which selectively utilizes previous knowledge in federated networks.We employ a probabilistic framework based on a normalizing flow model to quantify the credibility of previous knowledge.Comprehensive experiments affirm the superiority of our method over various baselines.Code is at: https://anonymous.4open.science/r/AF-FCL-7D65.
A Study of Generalization in Offline Reinforcement Learning
Ishita Mediratta · Qingfei You · Minqi Jiang · Roberta Raileanu
Despite the recent progress in offline reinforcement learning (RL) algorithms, agents are usually trained and tested on the same environment. In this paper, we perform an in-depth study of the generalization abilities of offline RL algorithms, showing that they struggle to generalize to new environments. We also introduce the first benchmark for evaluating generalization in offline learning, collecting datasets with varying sizes and skill-levels from Procgen (2D video games) and WebShop (e-commerce websites). The datasets contain trajectories for a limited number of game levels or natural language instructions and at test time, the agent has to generalize to new levels or instructions. Our experiments reveal that existing offline learning algorithms perform significantly worse than online RL on both train and test environments. Behavioral cloning is a strong baseline, typically outperforming offline RL and sequence modeling approaches when trained on data from multiple environments and tested on new ones. Finally, we find that increasing the diversity of the data, rather than its size, improves generalization for all algorithms. Our study demonstrates the limited generalization of current offline learning algorithms highlighting the need for more research in this area.
Preference based Reinforcement Learning (PbRL) removes the need to hand specify a reward function by learning one from preference feedback over policy behaviors. Current approaches to PbRL do not address the credit assignment problem inherent in determining which parts of a behavior most contributed to a preference resulting in data intensive approaches and subpar reward models. We address such limitations by introducing a credit assignment strategy (PRIOR) that uses a forward dynamics world model to approximate state importance within a trajectory and then guides rewards to be proportional to state importance through an auxiliary predicted return redistribution objective. Incorporating state importance into reward learning improves the speed of policy learning, overall policy performance, and reward recovery on both locomotion and manipulation tasks. For example, PRIOR achieves 80% success rate with half the amount of data compared to baselines. The performance gains and our ablations demonstrate the benefits even a simple credit assignment strategy can have on reward learning and that state importance in forward dynamics prediction is a strong proxy for a state's contribution to a preference decision.
Tool-Augmented Reward Modeling
Lei Li · Yekun Chai · Shuohuan Wang · Yu Sun · Hao Tian · Ningyu Zhang · hua wu
Reward modeling (a.k.a., preference modeling) is instrumental for aligning large language models with human preferences, particularly within the context of reinforcement learning from human feedback (RLHF). While conventional reward models (RMs) have exhibited remarkable scalability, they oft struggle with fundamental functionality such as arithmetic computation, code execution, and factual lookup. In this paper, we propose a tool-augmented preference modeling approach, named Themis, to address these limitations by empowering RMs with access to external environments, including calculators and search engines. This approach not only fosters synergy between tool utilization and reward grading but also enhances interpretive capacity and scoring reliability. Our study delves into the integration of external tools into RMs, enabling them to interact with diverse external sources and construct task-specific tool engagement and reasoning traces in an autoregressive manner. We validate our approach across a wide range of domains, incorporating seven distinct external tools. Our experimental results demonstrate a noteworthy overall improvement of 17.7% across eight tasks in preference ranking. Furthermore, our approach outperforms Gopher 280B by 7.3% on TruthfulQA task in zero-shot evaluation. In human evaluations, RLHF trained with Themis attains an average win rate of 32% when compared to baselines across four distinct tasks. Additionally, we provide a comprehensive collection of tool-related RM datasets, incorporating data from seven distinct tool APIs, totaling 15,000 instances. We have made the code, data, and model checkpoints publicly available to facilitate and inspire further research advancements (https://github.com/ernie-research/Tool-Augmented-Reward-Model).
An interpretable error correction method for enhancing code-to-code translation
Min Xue · Artur Andrzejak · Marla Leuther
Transformer-based machine translation techniques currently dominate the field of program translation. However, these models pose challenges in explaining program translations. Moreover, researchers frequently invest substantial time and computational resources in retraining models, yet the improvement in translation accuracy is quite limited.To address these issues, we introduce a novel approach, $k\text{NN-ECD}$, which combines $k$-nearest-neighbor search with a key-value error correction datastore to overwrite the wrong translations of TransCoder-ST. This provides a decision-making basis for interpreting the corrected translations. Building upon this, we further propose $k\text{NN-ECS}_{m}$, a methodology that employs a distributed structure with $m$ sub-datastores connected in series, utilizing $m$ diverse experts for multi-round error correction. Additionally, we put forward a unified name rule, encouraging the datastore to focus more on code logic and structure rather than diverse rare identifiers. Our experimental results show that our approach improves the translation accuracy from 68.9\% to 89.9\% of TransCoder-ST (for translation from Java to Python). This error correction method augments program translation, overcoming the inherent limitations of Transformer-based code translation models, such as resource-intensive retraining requirements and uninterpretable outcomes.
Language Control Diffusion: Efficiently Scaling through Space, Time, and Tasks
Edwin Zhang · Yujie Lu · Shinda Huang · William Wang · Amy Zhang
Training generalist agents is difficult across several axes, requiring us to deal with high-dimensional inputs (space), long horizons (time), and generalization to novel tasks. Recent advances with architectures have allowed for improved scaling along one or two of these axes, but are still computationally prohibitive to use. In this paper, we propose to address all three axes by leveraging Language to Control Diffusion models as a hierarchical planner conditioned on language (LCD). We effectively and efficiently scale diffusion models for planning in extended temporal, state, and task dimensions to tackle long horizon control problems conditioned on natural language instructions, as a step towards generalist agents. Comparing LCD with other state-of-the-art models on the CALVIN language benchmark finds that LCD outperforms other SOTA methods in multi-task success rates, whilst improving inference speed over other comparable diffusion models by 3.3x~15x. We show that LCD can successfully leverage the unique strength of diffusion models to produce coherent long range plans while addressing their weakness in generating low-level details and control.
ReSimAD: Zero-Shot 3D Domain Transfer for Autonomous Driving with Source Reconstruction and Target Simulation
Bo Zhang · Xinyu Cai · Jiakang Yuan · Donglin Yang · Jianfei Guo · Xiangchao Yan · Renqiu Xia · Botian Shi · Min Dou · Tao Chen · Si Liu · Junchi Yan · Yu Qiao
Domain shifts such as sensor type changes and geographical situation variations are prevalent in Autonomous Driving (AD), which poses a challenge since AD model relying on the previous domain knowledge can be hardly directly deployed to a new domain without additional costs. In this paper, we provide a new perspective and approach of alleviating the domain shifts, by proposing a Reconstruction-Simulation-Perception (ReSimAD) scheme. Specifically, the implicit reconstruction process is based on the knowledge from the previous old domain, aiming to convert the domain-related knowledge into domain-invariant representations, e.g., 3D scene-level meshes. Besides, the point clouds simulation process of multiple new domains is conditioned on the above reconstructed 3D meshes, where the target-domain-like simulation samples can be obtained, thus reducing the cost of collecting and annotating new-domain data for the subsequent perception process. For experiments, we consider different cross-domain situations such as Waymo-to-KITTI, Waymo-to-nuScenes, etc, to verify the zero-shot target-domain perception using ReSimAD. Results demonstrate that our method is beneficial to boost the domain generalization ability, even promising for 3D pre-training. Code and simulated points are available at: https://github.com/PJLab-ADG/3DTrans
SCHEMA: State CHangEs MAtter for Procedure Planning in Instructional Videos
Yulei Niu · Wenliang Guo · Long Chen · Xudong Lin · Shih-Fu Chang
We study the problem of procedure planning in instructional videos, which aims to make a goal-oriented sequence of action steps given partial visual state observations. The motivation of this problem is to learn a structured and plannable state and action space. Recent works succeeded in sequence modeling of steps with only sequence-level annotations accessible during training, which overlooked the roles of states in the procedures. In this work, we point out that State CHangEs MAtter (SCHEMA) for procedure planning in instructional videos. We aim to establish a more structured state space by investigating the causal relations between steps and states in procedures. Specifically, we explicitly represent each step as state changes and track the state changes in procedures. For step representation, we leveraged the commonsense knowledge in large language models (LLMs) to describe the state changes of steps via our designed chain-of-thought prompting. For state changes tracking, we align visual state observations with language state descriptions via cross-modal contrastive learning, and explicitly model the intermediate states of the procedure using LLM-generated state descriptions. Experiments on CrossTask, COIN, and NIV benchmark datasets demonstrate that our proposed SCHEMA model achieves state-of-the-art performance and obtains explainable visualizations.
ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate
Chi-Min Chan · Weize Chen · Yusheng Su · Jianxuan Yu · Wei Xue · Shanghang Zhang · Jie Fu · Zhiyuan Liu
Text evaluation has historically posed significant challenges, often demanding substantial labor and time cost. With the emergence of large language models (LLMs), researchers have explored LLMs' potential as alternatives for human evaluation. While these single-agent-based approaches show promise, experimental results suggest that further advancements are needed to bridge the gap between their current effectiveness and human-level evaluation quality.Recognizing that best practices of human evaluation processes often involve multiple human annotators collaborating in the evaluation, we resort to a multi-agent debate framework, moving beyond single-agent prompting strategies.In this paper, we construct a multi-agent referee team called $\textbf{ChatEval}$ to autonomously discuss and evaluate the quality of different texts. Our experiments on two benchmarks illustrate that ChatEval delivers superior accuracy and correlation in alignment with human assessment. Furthermore, we find that the diverse role prompts (different personas) are essential in the multi-agent debate process; that is, utilizing the same role description in the prompts can lead to a degradation in performance. Our qualitative analysis also shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.
Unified Human-Scene Interaction via Prompted Chain-of-Contacts
Zeqi Xiao · Tai Wang · Jingbo Wang · Jinkun Cao · Wenwei Zhang · Bo DAI · Dahua Lin · Jiangmiao Pang
Human-Scene Interaction (HSI) is a vital component of fields like embodied AI and virtual reality. Despite advancements in motion quality and physical plausibility, two pivotal factors, versatile interaction control and the development of a user-friendly interface, require further exploration before the practical application of HSI. This paper presents a unified HSI framework, UniHSI, which supports unified control of diverse interactions through language commands. This framework is built upon the definition of interaction as Chain of Contacts (CoC): steps of human joint-object part pairs, which is inspired by the strong correlation between interaction types and human-object contact regions.Based on the definition, UniHSI constitutes a Large Language Model (LLM) Planner to translate language prompts into task plans in the form of CoC, and a Unified Controller that turns CoC into uniform task execution. To facilitate training and evaluation, we collect a new dataset named ScenePlan that encompasses thousands of task plans generated by LLMs based on diverse scenarios. Comprehensive experiments demonstrate the effectiveness of our framework in versatile task execution and generalizability to real scanned scenes.
LoftQ: LoRA-Fine-Tuning-aware Quantization for Large Language Models
Yixiao Li · Yifan Yu · Chen Liang · Nikos Karampatziakis · Pengcheng He · Weizhu Chen · Tuo Zhao
Quantization is an indispensable technique for serving Large Language Models (LLMs) and has recently found its way into LoRA fine-tuning (Dettmers et al., 2023). In this work we focus on the scenario where quantization and LoRA fine- tuning are applied together on a pre-trained model. In such cases it is common to observe a consistent gap in the performance on downstream tasks between full fine-tuning and quantization plus LoRA fine-tuning approach. In response, we propose LoftQ (LoRA-Fine-Tuning-aware Quantization), a novel quantization framework that simultaneously quantizes an LLM and finds a proper low-rank initialization for LoRA fine-tuning. Such an initialization alleviates the discrep- ancy between the quantized and full-precision model and significantly improves the generalization in downstream tasks. We evaluate our method on natural lan- guage understanding, question answering, summarization, and natural language generation tasks. Experiments show that our method is highly effective and out- performs existing quantization methods, especially in the challenging 2-bit and 2/4-bit mixed precision regimes. We will release our code.
GNeRP: Gaussian-guided Neural Reconstruction of Reflective Objects with Noisy Polarization Priors
LI Yang · RUIZHENG WU · Jiyong Li · YINGCONG CHEN
Learning surfaces from neural radiance field (NeRF) became a rising topic in Multi-View Stereo (MVS). Recent Signed Distance Function (SDF)-based methods demonstrated their ability to reconstruct exact 3D shapes of Lambertian scenes. However, their results on reflective scenes are unsatisfactory due to the entanglement of specular radiance and complicated geometry. To address the challenges, we propose a Gaussian-based representation of normals in SDF fields. Supervised by polarization priors, this representation guides the learning of geometry behind the specular reflection and capture more details than existing methods. Moreover, we propose a reweighting strategy in optimization process to alleviate the noise issue of polarization priors. To validate the effectiveness of our design, we capture polarimetric information and ground truth meshes in additional reflective scenes with various geometry. We also evaluated our framework on PANDORA dataset. Both qualitative and quantitative comparisons prove our method outperforms existing neural 3D reconstruction methods in reflective scenes by a large margin.
How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression?
Jingfeng Wu · Difan Zou · Zixiang Chen · vladimir braverman · Quanquan Gu · Peter Bartlett
Transformers pretrained on diverse tasks exhibit remarkable in-context learning (ICL) capabilities, enabling them to solve unseen tasks solely based on input contexts without adjusting model parameters. In this paper, we study ICL in one of its simplest setups: pretraining a single-layer linear attention model for linear regression with a Gaussian prior. We establish a statistical task complexity bound for the attention model pretraining, showing that effective pretraining only requires a small number of independent tasks. Furthermore, we prove that the pretrained model closely matches the Bayes optimal algorithm, i.e., optimally tuned ridge regression, by achieving nearly Bayes optimal risk on unseen tasks under a fixed context length. These theoretical findings complement prior experimental research and shed light on the statistical foundations of ICL.
InstructPix2NeRF: Instructed 3D Portrait Editing from a Single Image
Jianhui Li · Shilong Liu · Zidong Liu · Yikai Wang · Kaiwen Zheng · Jinghui Xu · Jianmin Li · Jun Zhu
With the success of Neural Radiance Field (NeRF) in 3D-aware portrait editing, a variety of works have achieved promising results regarding both quality and 3D consistency. However, these methods heavily rely on per-prompt optimization when handling natural language as editing instructions. Due to the lack of labeled human face 3D datasets and effective architectures, the area of human-instructed 3D-aware editing for open-world portraits in an end-to-end manner remains under-explored. To solve this problem, we propose an end-to-end diffusion-based framework termed $\textbf{InstructPix2NeRF}$, which enables instructed 3D-aware portrait editing from a single open-world image with human instructions. At its core lies a conditional latent 3D diffusion process that lifts 2D editing to 3D space by learning the correlation between the paired images' difference and the instructions via triplet data. With the help of our proposed token position randomization strategy, we could even achieve multi-semantic editing through one single pass with the portrait identity well-preserved. Besides, we further propose an identity consistency module that directly modulates the extracted identity signals into our diffusion process, which increases the multi-view 3D identity consistency. Extensive experiments verify the effectiveness of our method and show its superiority against strong baselines quantitatively and qualitatively.
R-MAE: Regions Meet Masked Autoencoders
Duy-Kien Nguyen · Yanghao Li · Vaibhav Aggarwal · Martin R. Oswald · Alexander Kirillov · Cees G Snoek · Xinlei Chen
In this work, we explore regions as the visual analogue of words for self-supervised image representation learning. Inspired by Masked Autoencoding (MAE), a generative pre-training baseline, we propose masked region autoencoding to learn from groups of pixels or regions. Specifically, we design an architecture which efficiently addresses the one-to-many mapping between images and regions, while being highly effective especially with high-quality regions. When integrated with MAE, our approach (R-MAE) demonstrates consistent improvements across various pre-training datasets and downstream detection and segmentation benchmarks, with negligible computational overheads. Beyond the quantitative evaluation, our analysis indicates the models pre-trained with masked region autoencoding unlock the potential for interactive segmentation.
EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models
YEFEI HE · Jing Liu · Weijia Wu · Hong Zhou · Bohan Zhuang
Diffusion models have demonstrated remarkable capabilities in image synthesis and related generative tasks. Nevertheless, their practicality for low-latency real-world applications is constrained by substantial computational costs and latency issues. Quantization is a dominant way to compress and accelerate diffusion models, where post-training quantization (PTQ) and quantization-aware training (QAT) are two main approaches, each bearing its own properties. While PTQ exhibits efficiency in terms of both time and data usage, it may lead to diminished performance in low bit-width settings. On the other hand, QAT can help alleviate performance degradation but comes with substantial demands on computational and data resources. To capitalize on the advantages while avoiding their respective drawbacks, we introduce a data-free, quantization-aware and parameter-efficient fine-tuning framework for low-bit diffusion models, dubbed EfficientDM, to achieve QAT-level performance with PTQ-like efficiency. Specifically, we propose a quantization-aware variant of the low-rank adapter (QALoRA) that can be merged with model weights and jointly quantized to low bit-width. The fine-tuning process distills the denoising capabilities of the full-precision model into its quantized counterpart, eliminating the requirement for training data. To further enhance performance, we introduce scale-aware optimization to address ineffective learning of QALoRA due to variations in weight quantization scales across different layers. We also employ temporal learned step-size quantization to handle notable variations in activation distributions across denoising steps. Extensive experimental results demonstrate that our method significantly outperforms previous PTQ-based diffusion models while maintaining similar time and data efficiency. Specifically, there is only a marginal $0.05$ sFID increase when quantizing both weights and activations of LDM-4 to 4-bit on ImageNet $256\times256$. Compared to QAT-based methods, our EfficientDM also boasts a $16.2\times$ faster quantization speed with comparable generation quality, rendering it a compelling choice for practical applications.
Causal Modelling Agents: Causal Graph Discovery through Synergising Metadata- and Data-driven Reasoning
Ahmed Abdulaal · Adamos Hadjivasiliou · Nina Montaña-Brown · Tiantian He · Ayodeji Ijishakin · Ivana Drobnjak · Daniel Castro · Daniel Alexander
Scientific discovery hinges on the effective integration of metadata, which refers to a set of 'cognitive' operations such as determining what information is relevant for inquiry, and data, which encompasses physical operations such as observation and experimentation. This paper introduces the Causal Modelling Agent (CMA), a novel framework that synergizes the metadata-based reasoning capabilities of Large Language Models (LLMs) with the data-driven modelling of Deep Structural Causal Models (DSCMs) for the task of causal discovery. We evaluate the CMA's performance on a number of benchmarks, as well as on the real-world task of modelling the clinical and radiological phenotype of Alzheimer's Disease (AD). Our experimental results indicate that the CMA can outperform previous data-driven or metadata-driven approaches to causal discovery. In our real-world application, we use the CMA to derive new insights into the causal relationships among biomarkers of AD.
Nevis'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research
Jorg Bornschein · Alexandre Galashov · Ross Hemsley · Amal Rannen-Triki · Yutian Chen · Arslan Chaudhry · Owen He · Arthur Douillard · Massimo Caccia · Qixuan Feng · Jiajun Shen · Sylvestre-Alvise Rebuffi · Kitty Stacpoole · Diego de las Casas · Will Hawkins · Angeliki Lazaridou · Yee Whye Teh · Andrei A. Rusu · Razvan Pascanu · Marc’Aurelio Ranzato
A shared goal of several machine learning communities like continual learning, meta-learning and transfer learning, is to design algorithms and models that efficiently and robustly adapt to unseen tasks. An even more ambitious goal is to build models that never stop adapting, and that become increasingly more efficient through time by suitably transferring the accrued knowledge. Beyond the study of the actual learning algorithm and model architecture, there are several hurdles towards our quest to build such models, such as the choice of learning protocol, metric of success and data needed to validate research hypotheses. In this work, we introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks, sorted chronologically and extracted from papers sampled uniformly from computer vision proceedings spanning the last three decades. The resulting stream reflects what the research community thought was meaningful at any point in time, and it serves as an ideal test bed to assess how well models can adapt to new tasks, and do so better and more efficiently as time goes by. Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth. The diversity is also reflected in the wide range of dataset sizes, spanning over four orders of magnitude. Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks, yet with a low entry barrier as it is limited to a single modality and well understood supervised learning problems. Moreover, we provide a reference implementation including strong baselines and an evaluation protocol to compare methods in terms of their trade-off between accuracy and compute. We hope that NEVIS'22 can be useful to researchers working on continual learning, meta-learning, AutoML and more generally sequential learning, and help these communities join forces towards more robust models that efficiently adapt to a never ending stream of data.
Abstractors and relational cross-attention: An inductive bias for explicit relational reasoning in Transformers
Awni Altabaa · Taylor Webb · Jonathan Cohen · John Lafferty
An extension of Transformers is proposed that enables explicit relational reasoning through a novel module called the Abstractor. At the core of the Abstractor is a variant of attention called relational cross-attention. The approach is motivated by an architectural inductive bias for relational learning that disentangles relational information from extraneous features about individual objects. This enables explicit relational reasoning, supporting abstraction and generalization from limited data. The Abstractor is first evaluated on simple discriminative relational tasks and compared to existing relational architectures. Next, the Abstractor is evaluated on purely relational sequence-to-sequence tasks, where dramatic improvements are seen in sample efficiency compared to standard Transformers. Finally, Abstractors are evaluated on a collection of tasks based on mathematical problem solving, where modest but consistent improvements in performance and sample efficiency are observed.
It's Never Too Late: Fusing Acoustic Information into Large Language Models for Automatic Speech Recognition
CHEN CHEN · Ruizhe Li · Yuchen Hu · Sabato Siniscalchi · Pin-Yu Chen · Ensiong Chng · Huck Yang
Recent studies have successfully shown that large language models (LLMs) can be successfully used for generative error correction (GER) on top of the automatic speech recognition (ASR) output. Specifically, an LLM is utilized to carry out a direct mapping from the N-best hypotheses list generated by an ASR system to the predicted output transcription. However, despite its effectiveness, GER introduces extra data uncertainty since the LLM is trained without taking into account acoustic information available in the speech signal. In this work, we aim to overcome such a limitation by infusing acoustic information before generating the predicted transcription through a novel late fusion solution termed Uncertainty-Aware Dynamic Fusion (UADF). UADF is a multimodal fusion approach implemented into an auto-regressive decoding process and works in two stages: (i) It first analyzes and calibrates the token-level LLM decision, and (ii) it then dynamically assimilates the information from the acoustic modality. Experimental evidence collected from various ASR tasks shows that UADF surpasses existing fusion mechanisms in several ways. It yields significant improvements in word error rate (WER) while mitigating data uncertainty issues in LLM and addressing the poor generalization relied with sole modality during fusion. We also demonstrate that UADF seamlessly adapts to audio-visual speech recognition.
Accelerated Sampling with Stacked Restricted Boltzmann Machines
Clément Roussel · Jorge Fernandez-de-Cossio-Diaz · Simona Cocco · Remi Monasson
Sampling complex distributions is an important but difficult objective in various fields, including physics, chemistry, and statistics. An improvement of standard Monte Carlo (MC) methods, intensively used in particular in the context of disordered systems, is Parallel Tempering, also called replica exchange MC, in which a sequence of MC Markov chains at decreasing temperatures are run in parallel and can swap their configurations. In this work we apply the ideas of parallel tempering in the context of restricted Boltzmann machines (RBM), a paradigm of unsupervised architectures, capable to learn complex, multimodal distributions. Inspired by Deep Tempering, an approach introduced for deep belief networks, we show how to learn on top of the first RBM a stack of nested RBMs, using the representations of a RBM as ’data’ for the next one along the stack. In our Stacked Tempering approach the hidden configurations of a machine can be exchanged with the visible configurations of the next one in the stack. Replica exchanges between the different RBMs is facilitated by the increasingly clustered representations learnt by deeper RBMs, allowing for fast transitions between the different modes of the data distribution. Analytical calculations of mixing times in a simplified theoretical setting shed light on why Stacked Tempering works, and how hyperparameters, such as the aspect ratios of the RBMs and weight regularization should be chosen. We illustrate the efficiency of the Stacked Tempering method with respect to standard and replica exchange MC on several datasets: MNIST, in-silico Lattice Proteins, and the 2D-Ising model.
Enhancing Tail Performance in Extreme Classifiers by Label Variance Reduction
Anirudh Buvanesh · Rahul Chand · Jatin Prakash · Bhawna Paliwal · Mudit Dhawan · Neelabh Madan · Deepesh Hada · Vidit Jain · Sonu Mehta · Yashoteja Prabhu · Manish Gupta · Ramachandran Ramjee · Manik Varma
Extreme Classification (XC) architectures, which utilize a massive one-vs-all classifier layer at the output, have demonstrated remarkable performance on problems with large label sets. Nonetheless, these have also been observed to falter on tail labels with few representative samples. This phenomenon has been attributed to factors such as classifier over-fitting and missing label bias, and solutions involving regularization and loss re-calibration have been developed.This paper explores the impact of label variance, a previously unexamined factor, on the tail performance in extreme classifiers. Label variance refers to the imprecision introduced in the ground truth when sampling it from a complex underlying distribution - a common phenomenon in most XC datasets. This compromises the quality of trained models, with a pronounced impact on the classifiers for infrequently sampled tail labels.This paper presents a method to systematically reduce label variance in XC by effectively utilizing the capabilities of an additional, tail-robust teacher model. It proposes a principled knowledge distillation framework, \model, which enhances tail performance in extreme classifiers, with formal guarantees on generalization. Finally, we introduce an effective instantiation of this framework that employs a specialized Siamese teacher model. This model excels in tail accuracy and significantly enhances the quality of student one-vs-all classifiers.Comprehensive experiments are conducted on a diverse set of XC datasets which demonstrate that \model can enhance tail performance by around 5\% and 6\% points in PSP and Coverage metrics respectively when integrated with leading extreme classifiers. Moreover, when added to the top-performing Renée classifier, it establishes a new state-of-the-art. Extensive ablations and analysis substantiate the efficacy of our design choices. Code and datasets will be released for research purposes.
Patched Denoising Diffusion Models For High-Resolution Image Synthesis
Zheng Ding · Mengqi Zhang · Jiajun Wu · Zhuowen Tu
We propose an effective denoising diffusion model for generating high-resolution images (e.g., 1024$\times$512), trained on small-size image patches (e.g., 64$\times$64). We name our algorithm Patch-DM, in which a new feature collage strategy is designed to avoid the boundary artifact when synthesizing large-size images. Feature collage systematically crops and combines partial features of the neighboring patches to predict the features of a shifted image patch, allowing the seamless generation of the entire image due to the overlap in the patch feature space. Patch-DM produces high-quality image synthesis results on our newly collected dataset of nature images (1024$\times$512), as well as on standard benchmarks of LHQ(1024$\times$ 1024), FFHQ(1024$\times$ 1024) and on other datasets with smaller sizes (256$\times$256), including LSUN-Bedroom, LSUN-Church, and FFHQ. We compare our method with previous patch-based generation methods and achieve state-of-the-art FID scores on all six datasets. Further, Patch-DM also reduces memory complexity compared to the classic diffusion models.
Towards Foundation Models for Knowledge Graph Reasoning
Mikhail Galkin · Xinyu Yuan · Hesham Mostafa · Jian Tang · Zhaocheng Zhu
Foundation models in language and vision have the ability to run inference on any textual and visual inputs thanks to the transferable representations such as a vocabulary of tokens in language. Knowledge graphs (KGs) have different entity and relation vocabularies that generally do not overlap.The key challenge of designing foundation models on KGs is to learn such transferable representations that enable inference on any graph with arbitrary entity and relation vocabularies.In this work, we make a step towards such foundation models and present ULTRA, an approach for learning universal and transferable graph representations. ULTRA builds relational representations as a function conditioned on their interactions.Such a conditioning strategy allows a pre-trained ULTRA model to inductively generalize to any unseen KG with any relation vocabulary and to be fine-tuned on any graph.Conducting link prediction experiments on 57 different KGs, we find that the zero-shot inductive inference performance of a single pre-trained ULTRA model on unseen graphs of various sizes is often on par or better than strong baselines trained on specific graphs. Fine-tuning further boosts the performance.
Is This the Subspace You Are Looking for? An Interpretability Illusion for Subspace Activation Patching
Aleksandar Makelov · Georg Lange · Atticus Geiger · Neel Nanda
Mechanistic interpretability aims to attribute high-level model behaviors to specific, interpretable learned features. It is hypothesized that these features manifest as directions or low-dimensional subspaces within activation space. Accordingly, recent studies have explored the identification and manipulation of such subspaces to reverse-engineer computations, employing methods such as activation patching. In this work, we demonstrate that naïve approaches to subspace interventions can give rise to interpretability illusions.Specifically, even if patching along a subspace has the intended end-to-end causal effect on model behavior, this effect may be achieved by activating \emph{a dormant parallel pathway} using a component that is \textit{causally disconnected} from the model output.We demonstrate this in a mathematical example, realize the example empirically in two different settings (the Indirect Object Identification (IOI) task and factual recall), and argue that activating dormant pathways ought to be prevalent in practice.In the context of factual recall, we further show that the illusion is related to rank-1 fact editing, providing a mechanistic explanation for previous work observing an inconsistency between fact editing performance and fact localisation.However, this does not imply that activation patching of subspaces is intrinsically unfit for interpretability.To contextualize our findings, we also show what a success case looks like in a task (IOI) where prior manual circuit analysis allows an understanding of the location of the ground truth feature. We explore the additional evidence needed to argue that a patched subspace is faithful.
PF-LRM: Pose-Free Large Reconstruction Model for Joint Pose and Shape Prediction
Peng Wang · Hao Tan · Sai Bi · Yinghao Xu · Fujun Luan · Kalyan Sunkavalli · Wenping Wang · Zexiang Xu · Kai Zhang
We propose a Pose-Free Large Reconstruction Model (PF-LRM) for reconstructing a 3D object from a few unposed images even with little visual overlap, while simultaneously estimating the camera poses in 1.3 seconds on a single A100 GPU. PF-LRM is a highly scalable method utilizing the self-attention blocks to exchange information between 3D object tokens and 2D image tokens; we predict coarse geometry for each view, and then use a differentiable Perspective-n-Point (PnP) solver to obtain camera poses. When trained on a huge amount of multi-view data, PF-LRM shows strong cross-dataset generalization ability, and outperforms baseline methods by a large margin in terms of pose prediction accuracy and 3D reconstruction quality on various evaluation datasets. We also demonstrate our model's robustness to variable numbers of input views and segmentation mask errors. Our project website is at: https://pf-lrm.github.io/project.
Video Language Planning
Yilun Du · Sherry Yang · Pete Florence · Fei Xia · Ayzaan Wahid · brian ichter · Pierre Sermanet · Tianhe Yu · Pieter Abbeel · Joshua B Tenenbaum · Leslie Kaelbling · Andy Zeng · Jonathan Tompson
We are interested in enabling visual planning for complex long-horizon tasks in the space of generated videos and language, leveraging recent advances in large generative models pretrained on Internet-scale data. To this end, we present video language planning (VLP), an algorithm that consists of a tree search procedure, where we train (i) vision-language models to serve as both policies and value functions, and (ii) text-to-video models as dynamics models. VLP takes as input a long-horizon task instruction and current image observation, and outputs a long video plan that provides detailed multimodal (video and language) specifications that describe how to complete the final task. VLP scales with increasing computation budget where more computation time results in improved video plans, and is able to synthesize long-horizon video plans across different robotics domains -- from multi-object rearrangement, to multi-camera bi-arm dexterous manipulation. Generated video plans can be translated into real robot actions via goal-conditioned policies, conditioned on each intermediate frame of the generated video. Experiments show that VLP substantially improves long-horizon task success rates compared to prior methods on both simulated and real robots (across 3 hardware platforms).
KITAB: Evaluating LLMs on Constraint Satisfaction for Information Retrieval
Marah I Abdin · Suriya Gunasekar · Varun Chandrasekaran · Jerry Li · Mert Yuksekgonul · Rahee Peshawaria · Ranjita Naik · Besmira Nushi
We study the ability of state-of-the art models to answer constraint satisfaction queries for information retrieval (e.g., “a list of ice cream shops in San Diego”). In the past, such queries were considered as tasks that could only be solved via web-search or knowledge bases. More recently, large language models (LLMs) have demonstrated initial emergent abilities in this task. However, many current retrieval benchmarks are either saturated or do not measure constraint satisfaction. Motivated by rising concerns around factual incorrectness and hallucinations of LLMs, we present KITAB, a new dataset for measuring constraint satisfaction abilities of language models. KITAB consists of book-related data across more than 600 authors and 13,000 queries, and also offers an associated dynamic data collection and constraint verification approach for acquiring similar test data for other authors. Our extended experiments on GPT4 and GPT3.5 characterize and decouple common failure modes across dimensions such as information popularity, constraint types, and context availability. Results show that in the absence of context, models exhibit severe limitations as measured by irrelevant information, factual errors, and incompleteness, many of which exacerbate as information popularity decreases. While context availability mitigates irrelevant information, it is not helpful for satisfying constraints, identifying fundamental barriers to constraint satisfaction. We open source our contributions to foster further research on improving constraint satisfaction abilities of future models.
Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization
Weiyang Liu · Zeju Qiu · Yao Feng · Yuliang Xiu · Yuxuan Xue · Longhui Yu · Haiwen Feng · Zhen Liu · Juyeon Heo · Songyou Peng · Yandong Wen · Michael J Black · Adrian Weller · Bernhard Schoelkopf
Large foundation models are becoming ubiquitous, but training them from scratch is prohibitively expensive. Thus, efficiently adapting these powerful models to downstream tasks is increasingly important. In this paper, we study a principled finetuning paradigm -- Orthogonal Finetuning (OFT) -- for downstream task adaptation. Despite demonstrating good generalizability, OFT still uses a fairly large number of trainable parameters due to the high dimensionality of orthogonal matrices. To address this, we start by examining OFT from an information transmission perspective, and then identify a few key desiderata that enable better parameter-efficiency. Inspired by how the Cooley-Tukey fast Fourier transform algorithm enables efficient information transmission, we propose an efficient orthogonal parameterization using butterfly structures. We apply this parameterization to OFT, creating a novel parameter-efficient finetuning method, called Orthogonal Butterfly (BOFT). By subsuming OFT as a special case, BOFT introduces a generalized orthogonal finetuning framework. Finally, we conduct an extensive empirical study of adapting large vision transformers, large language models, and text-to-image diffusion models to various downstream tasks in computer vision and natural language. The results validate the effectiveness of BOFT as a generic finetuning method.
LogicMP: A Neuro-symbolic Approach for Encoding First-order Logic Constraints
Weidi Xu · Jingwei Wang · Lele Xie · Jianshan He · Hongting Zhou · Taifeng Wang · Xiaopei Wan · Jingdong Chen · Chao Qu · Wei Chu
Integrating first-order logic constraints (FOLCs) with neural networks is a crucial but challenging problem since it involves modeling intricate correlations to satisfy the constraints. This paper proposes a novel neural layer, LogicMP, which performs mean-field variational inference over a Markov Logic Network (MLN). It can be plugged into any off-the-shelf neural network to encode FOLCs while retaining modularity and efficiency. By exploiting the structure and symmetries in MLNs, we theoretically demonstrate that our well-designed, efficient mean-field iterations greatly mitigate the difficulty of MLN inference, reducing the inference from sequential calculation to a series of parallel tensor operations. Empirical results in three kinds of tasks over images, graphs, and text show that LogicMP outperforms advanced competitors in both performance and efficiency.
Partitioning Message Passing for Graph Fraud Detection
Wei Zhuo · Zemin Liu · Bryan Hooi · Bingsheng He · Guang Tan · Rizal Fathony · Jia Chen
Label imbalance and homophily-heterophily mixture are the fundamental problems encountered when applying Graph Neural Networks (GNNs) to Graph Fraud Detection (GFD) tasks. Existing GNN-based GFD models are designed to augment graph structure to accommodate the inductive bias of GNNs towards homophily, by excluding heterophilic neighbors during message passing. In our work, we argue that the key to applying GNNs for GFD is not to exclude but to {\em distinguish} neighbors with different labels. Grounded in this perspective, we introduce Partitioning Message Passing (PMP), an intuitive yet effective message passing paradigm expressly crafted for GFD. Specifically, in the neighbor aggregation stage of PMP, neighbors with different classes are aggregated with distinct node-specific aggregation functions. By this means, the center node can adaptively adjust the information aggregated from its heterophilic and homophilic neighbors, thus avoiding the model gradient being dominated by benign nodes which occupy the majority of the population. We theoretically establish a connection between the spatial formulation of PMP and spectral analysis to characterize that PMP operates an adaptive node-specific spectral graph filter, which demonstrates the capability of PMP to handle heterophily-homophily mixed graphs. Extensive experimental results show that PMP can significantly boost the performance on GFD tasks.
Bellman Optimal Step-size Straightening of Flow-Matching Models
Bao Nguyen · Binh Nguyen · Viet Anh Nguyen
Flow matching is a powerful framework for generating high-quality samples in various applications, especially image synthesis. However, the intensive computational demands of these models, especially during the fine-tuning process and sampling processes, pose significant challenges for low-resource scenarios. This paper introduces Bellman Optimal Step-size Straightening (BOSS) technique for distilling flow-matching generative models: it aims specifically for a few-step efficient image sampling while adhering to a computational budget constraint. First, this technique involves a dynamic programming algorithm that optimizes the step sizes of the pretrained network. Then, it refines the velocity network to match the optimal step sizes, aiming to straighten the generation paths. Extensive experimental evaluations across image generation tasks demonstrate the efficacy of BOSS in terms of both resource utilization and image quality. Our results reveal that BOSS achieves substantial gains in efficiency while maintaining competitive sample quality, effectively bridging the gap between low-resource constraints and the demanding requirements of flow-matching generative models. Our paper also fortifies the responsible development of artificial intelligence, offering a more sustainable generative model that reduces computational costs and environmental footprints.
Test-time Adaption against Multi-modal Reliability Bias
Mouxing Yang · Yunfan Li · Changqing Zhang · Peng Hu · Xi Peng
Test-time adaption (TTA) has emerged as a new paradigm for reconciling distribution shifts between domains without accessing source data. However, existing TTA methods mainly concentrate on uni-modal tasks, overlooking the complexity in multi-modal scenarios.In this paper, we delve into the multi-modal test-time adaption and reveal a new challenge named reliability bias. Different from the definition of traditional distribution shifts, reliability bias refers to the information discrepancies across different modalities derived from intra-modal distribution shifts. To solve the challenge, we propose a novel method, dubbed reliable fusion and robust adaption (RFRA). On the one hand, unlike the existing TTA paradigm that mainly repurposes the normalization layers, RFRA employs a new paradigm that modulates the attention between modalities in a self-adaptive way, supporting reliable fusion against reliability bias. On the other hand, RFRA adopts a novel objective function for robust multi-modal adaption, where the contributions of confident predictions could be amplified and the negative impacts of noisy predictions could be mitigated. Moreover, we introduce two new benchmarks to facilitate comprehensive evaluations of multi-modal TTA under reliability bias. Extensive experiments on the benchmarks not only verify the effectiveness of our method but also give some new observations to the community. The code and benchmarks will be released.
Manipulating dropout reveals an optimal balance of efficiency and robustness in biological and machine visual systems
Jacob Prince · Gabriel Fajardo · George Alvarez · Talia Konkle
According to the efficient coding hypothesis, neural populations encode information optimally when representations are high-dimensional and uncorrelated. However, such codes may carry a cost in terms of generalization and robustness. Past empirical studies of early visual cortex (V1) in rodents have suggested that this tradeoff indeed constrains sensory representations. However, it remains unclear whether these insights generalize across the hierarchy of the human visual system, and particularly to object representations in high-level occipitotemporal cortex (OTC). To gain new empirical clarity, here we develop a family of object recognition models with parametrically varying dropout proportion $p$, which induces systematically varying dimensionality of internal responses (while controlling all other inductive biases). We find that increasing dropout produces an increasingly smooth, low-dimensional representational space. Optimal robustness to lesioning is observed at around 70% dropout, after which both accuracy and robustness decline. Representational comparison to large-scale 7T fMRI data from occipitotemporal cortex in the Natural Scenes Dataset reveals that this optimal degree of dropout is also associated with maximal emergent neural predictivity. Finally, using new techniques for achieving denoised estimates of the eigenspectrum of human fMRI responses, we compare the rate of eigenspectrum decay between model and brain feature spaces. We observe that the match between model and brain representations is associated with a common balance between efficiency and robustness in the representational space. These results suggest that varying dropout may reveal an optimal point of balance between the efficiency of high-dimensional codes and the robustness of low dimensional codes in hierarchical vision systems.
Function-space Parameterization of Neural Networks for Sequential Learning
Aidan Scannell · Riccardo Mereu · Paul Chang · Ella Tamir · Joni Pajarinen · Arno Solin
Sequential learning paradigms pose challenges for gradient-based deep learning due to difficulties incorporating new data and retaining prior knowledge. While Gaussian processes elegantly tackle these problems, they struggle with scalability and handling rich inputs, such as images. To address these issues, we introduce a technique that converts neural networks from weight space to function space, through a dual parameterization. Our parameterization offers: (i) a way to scale function-space methods to large data sets via sparsification, (ii) retention of prior knowledge when access to past data is limited, and (iii) a mechanism to incorporate new data without retraining. Our experiments demonstrate that we can retain knowledge in continual learning and incorporate new data efficiently. We further show its strengths in uncertainty quantification and guiding exploration in model-based RL.
A Statistical Analysis of Wasserstein Autoencoders for Intrinsically Low-dimensional Data
Saptarshi Chakraborty · Peter Bartlett
Variational Autoencoders (VAEs) have gained significant popularity among researchers as a powerful tool for understanding unknown distributions based on limited samples. This popularity stems partly from their impressive performance and partly from their ability to provide meaningful feature representations in the latent space. Wasserstein Autoencoders (WAEs), a variant of VAEs, aim to not only improve model efficiency but also interpretability. However, there has been limited focus on analyzing their statistical guarantees. The matter is further complicated by the fact that the data distributions to which WAEs are applied - such as natural images - are often presumed to possess an underlying low-dimensional structure within a high-dimensional feature space, which current theory does not adequately account for, rendering known bounds inefficient. To bridge the gap between the theory and practice of WAEs, in this paper, we show that WAEs can learn the data distributions when the network architectures are properly chosen. We show that the convergence rates of the expected excess risk in the number of samples for WAEs are independent of the high feature dimension, instead relying only on the intrinsic dimension of the data distribution.
Large Language Models as Analogical Reasoners
Michihiro Yasunaga · Xinyun Chen · Yujia Li · Panupong Pasupat · Jure Leskovec · Percy Liang · Ed H. Chi · Denny Zhou
Chain-of-thought (CoT) prompting for language models demonstrates impressive performance across reasoning tasks, but typically needs labeled exemplars of the reasoning process. In this work, we introduce a new prompting approach, analogical prompting, designed to automatically guide the reasoning process of large language models. Inspired by analogical reasoning, a cognitive process in which humans draw from relevant past experiences to tackle new problems, our approach prompts language models to self-generate relevant exemplars or knowledge in the context, before proceeding to solve the given problem. This method presents several advantages: it obviates the need for labeling or retrieving exemplars, offering generality and convenience; it can also tailor the generated exemplars and knowledge to each problem, offering adaptability. Experimental results show that our approach outperforms 0-shot CoT and manual few-shot CoT in a variety of reasoning tasks, including math problem solving in GSM8K and MATH, code generation in Codeforces, and other reasoning tasks in BIG-Bench.
General Stability Analysis for Zeroth-Order Optimization Algorithms
Xinyue Liu · Hualin Zhang · Bin Gu · Hong Chen
Zeroth-order optimization algorithms are widely used for black-box optimization problems, such as those in machine learning and prompt engineering, where the gradients are approximated using function evaluations. Recently, a generalization result was provided for zeroth-order stochastic gradient descent (SGD) algorithms through stability analysis. However, this result was limited to the vanilla 2-point zeroth-order estimate of Gaussian distribution used in SGD algorithms. To address these limitations, we propose a general proof framework for stability analysis that applies to convex, strongly convex, and non-convex conditions, and yields results for popular zeroth-order optimization algorithms, including SGD, GD, and SVRG, as well as various zeroth-order estimates, such as 1-point and 2-point with different distributions and coordinate estimates. Our general analysis shows that coordinate estimation can lead to tighter generalization bounds for SGD, GD, and SVRG versions of zeroth-order optimization algorithms, due to the smaller expansion brought by coordinate estimates to stability analysis.
From Matching to Mixing: A Graph Interpolation Approach for SAT Instance Generation
Xinyan Chen · Yang Li · Runzhong Wang · Junchi Yan
The Boolean satisfiability problem (SAT) stands as a canonical NP-complete combinatorial optimization (CO) problem, with wide impact on both theoretical and industrial scenarios. In particular, the scarcity of real-world SAT instances and their usefulness for tuning SAT solvers underscore the necessity for effective and efficient ways of hard instance generation, whereas existing methods either struggle to maintain plausible hardness or suffer from limited applicability. Different from the typical construction-based methods, this paper introduces an adaptive and efficient graph interpolation approach that in place modifies the raw structure of graph-represented SAT instance by replacing it with a counterpart from another instance. Specifically, our method involves a two-stage matching and mixing pipeline. The matching aims to find a correspondence map of literal nodes from two instance graphs via learned features from a matching network; while the mixing stage involves iteratively exchanging clause pairs with the highest correspondence scores until a specified replacement ratio is achieved. We further show that under our matching-mixing framework, moderate randomness can avoid hardness degradation of SAT instances by introducing Gumbel noise. Experimental results show the superiority of the proposed method with both resemblance in structure and hardness, as well as general applicability in an efficient way. Source code will be released.
Analyzing and Improving OT-based Adversarial Networks
Jaemoo Choi · Jaewoong Choi · Myungjoo Kang
Optimal transport (OT) problem aims to find a transport plan that bridges two distributions while minimizing a given cost function. OT theory has been widely utilized in generative modeling. In the beginning, OT distance has been used as a measure for assessing the distance between data and generated distributions. Recently, OT transport map between data and prior distributions has been utilized as a generative model. These OT-based generative models share a similar adversarial training objective. In this paper, we begin by unifying these OT-based adversarial methods within a single framework. Then, we elucidate the role of each component in training dynamics through a comprehensive analysis of this unified framework. Moreover, we suggest a simple but novel method that improves the previously best-performing OT-based model. Intuitively, our approach conducts a gradual refinement of the generated distribution, progressively aligning it with the data distribution. Our approach achieves a FID score of 2.51 on CIFAR-10, outperforming unified OT-based adversarial approaches.
Motion Guidance: Diffusion-Based Image Editing with Differentiable Motion Estimators
Daniel Geng · Andrew Owens
Diffusion models are capable of generating impressive images conditioned on text descriptions, and extensions of these models allow users to edit images at a relatively coarse scale. However, the ability to precisely edit the layout, position, pose, and shape of objects in images with diffusion models is still difficult. To this end, we propose {\it motion guidance}, a zero-shot technique that allows a user to specify dense, complex motion fields that indicate where each pixel in an image should move. Motion guidance works by steering the diffusion sampling process with the gradients through an off-the-shelf optical flow network. Specifically, we design a guidance loss that encourages the sample to have the desired motion, as estimated by a flow network, while also being visually similar to the source image. By simultaneously sampling from a diffusion model and guiding the sample to have low guidance loss, we can obtain a motion-edited image. We demonstrate that our technique works on complex motions and produces high quality edits of real and generated images.
On the Parameterization of Second-Order Optimization Effective towards the Infinite Width
Satoki Ishikawa · Ryo Karakida
Second-order optimization has been developed to accelerate the training of deep neural networks and it is being applied to increasingly larger-scale models. In this study, towards training on further larger scales, we identify a specific parameterization for second-order optimization that promotes feature learning in a stable manner even if the network width increases significantly. Inspired by a maximal update parametrization, we consider a one-step update of the gradient and reveal the appropriate scales of hyperparameters including random initialization, learning rates, and damping terms. Our approach covers two major second-order optimization algorithms, K-FAC and Shampoo, and we demonstrate that our parametrization achieves higher generalization performance in feature learning.In particular, it enables us to transfer the hyperparameters across models with different widths.
Understanding Hidden Context in Preference Learning: Consequences for RLHF
Anand Siththaranjan · Cassidy Laidlaw · Dylan Hadfield-Menell
In practice, preference learning from human feedback depends on incomplete data with hidden context. Hidden context refers to data that affects the feedback received, but which is not represented in the data used to train a preference model. This captures common issues of data collection, such as having human annotators with varied preferences, cognitive processes that result in seemingly irrational behavior, and combining data labeled according to different criteria. We prove that standard applications of preference learning, including reinforcement learning from human feedback (RLHF), implicitly aggregate over hidden contexts according to a well-known voting rule called Borda count. We show this can produce counter-intuitive results that are very different from other methods which implicitly aggregate via expected utility. Furthermore, our analysis formalizes the way that preference learning from users with diverse values tacitly implements a social choice function. A key implication of this result is that annotators have an incentive to misreport their preferences in order to influence the learned model, leading to vulnerabilities in the deployment of RLHF. As a step towards mitigating these problems, we introduce a class of methods called distributional preference learning (DPL). DPL methods estimate a distribution of possible score values for each alternative in order to better account for hidden context. Experimental results indicate that applying DPL to RLHF for LLM chatbots identifies hidden context in the data and significantly reduces subsequent jailbreak vulnerability.
Headless Language Models: Learning without Predicting with Contrastive Weight Tying
Nathan Godey · Éric Clergerie · Benoît Sagot
Self-supervised pre-training of language models usually consists in predicting probability distributions over extensive token vocabularies. In this study, we propose an innovative method that shifts away from probability prediction and instead focuses on reconstructing input embeddings in a contrastive fashion via Constrastive Weight Tying (CWT). We apply this approach to pretrain Headless Language Models in both monolingual and multilingual contexts. Our method offers practical advantages, substantially reducing training computational requirements by up to 20 times, while simultaneously enhancing downstream performance and data efficiency. We observe a significant +1.6 GLUE score increase and a notable +2.7 LAMBADA accuracy improvement compared to classical LMs within similar compute budgets.
Tree Cross Attention
Leo Feng · Frederick Tung · Hossein Hajimirsadeghi · Yoshua Bengio · Mohamed Osama Ahmed
Cross Attention is a popular method for retrieving information from a set of context tokens for making predictions. At inference time, for each prediction, Cross Attention scans the full set of $\mathcal{O}(N)$ tokens. In practice, however, often only a small subset of tokens are required for good performance. Methods such as Perceiver IO are cheap at inference as they distill the information to a smaller-sized set of latent tokens $L < N$ on which cross attention is then applied, resulting in only $\mathcal{O}(L)$ complexity. However, in practice, as the number of input tokens and the amount of information to distill increases, the number of latent tokens needed also increases significantly. In this work, we propose Tree Cross Attention (TCA) - a module based on Cross Attention that only retrieves information from a logarithmic $\mathcal{O}(\log(N))$ number of tokens for performing inference. TCA organizes the data in a tree structure and performs a tree search at inference time to retrieve the relevant tokens for prediction. Leveraging TCA, we introduce ReTreever, a flexible architecture for token-efficient inference. We show empirically that Tree Cross Attention (TCA) performs comparable to Cross Attention across various classification and uncertainty regression tasks while being significantly more token-efficient. Furthermore, we compare ReTreever against Perceiver IO, showing significant gains while using the same number of tokens for inference.
Adaptive Retrieval and Scalable Indexing for k-NN Search with Cross-Encoders
Nishant Yadav · Nicholas Monath · Manzil Zaheer · Rob Fergus · Andrew McCallum
Cross-encoder (CE) models which compute similarity by jointly encoding a query-item pair perform better than using dot-product with embedding-based models (dual-encoders) at estimating query-item relevance. Existing approaches perform $k$-NN search with cross-encoders by approximating the CE similarity with a vector embedding space fit either with dual-encoders (DE) or CUR matrix factorization. DE-based retrieve-and-rerank approaches suffer from poor recall as DE generalize poorly to new domains and the test-time retrieval with DE is decoupled from the CE. While CUR-based approaches can be more accurate than the DE-based retrieve-and-rerank approach, such approaches require prohibitively large number of CE calls to compute item embeddings, thus making it impractical for deployment as scale. In this paper, we address these shortcomings with our proposed sparse-matrix factorization based method that efficiently computes latent query and item representations to approximate CE scores and performs $k$-NN search with the approximate CE similarity. In an offline indexing stage, we compute item embeddings by factorizing a sparse matrix containing query-item CE scores for a set of train queries. Our method produces a high quality approximation while requiring only a fraction of CE similarity calls as compared to CUR-based methods, and allows for leveraging DE models to initialize the embedding space while avoiding compute- and resource-intensive finetuning of DE via distillation. At test-time, we keep item embeddings fixed and perform retrieval over multiple rounds, alternating between a) estimating the test-query embedding by minimizing error in approximating CE scores of items retrieved thus far, and b) using the updated test-query embedding for retrieving more items in the next round. Our proposed $k$-NN search method can achieve up to 5\% and 54\% improvement in $k$-NN recall for $k=1$ and 100 respectively over the widely-used DE-based retrieve-and-rerank approach. Furthermore, our proposed approach to index the items by aligning item embeddings with the CE achieves up to 100$\times$ and 5$\times$ speedup over CUR-based and dual-encoder distillation based approaches respectively while matching or improving $k$-NN search recall over baselines.
Fixed Non-negative Orthogonal Classifier: Inducing Zero-mean Neural Collapse with Feature Dimension Separation
Hoyong Kim · Kangil Kim
Fixed classifiers in neural networks for classification problems have demonstrated cost efficiency and even outperformed learnable classifiers in some popular benchmarks when incorporating orthogonality. Despite these advantages, prior research has yet to investigate the training dynamics of fixed orthogonal classifiers on neural collapse, a recently clarified phenomenon that last-layer features converge to a specific form, called simplex ETF, in training classification models involving the post-zero-error phase. Ensuring this phenomenon is critical for obtaining global optimality in a layer-peeled model, potentially leading to enhanced performance in practice. However, fixed orthogonal classifiers cannot invoke neural collapse due to their geometric limitations. To overcome the limits, we analyze a $\textit{zero-mean neural collapse}$ considering the orthogonality in non-negative Euclidean space. Then, we propose a $\textit{fixed non-negative orthogonal classifier}$ that induces the optimal solution and maximizes the margin of an orthogonal layer-peeled model by satisfying the properties of zero-mean neural collapse. Building on this foundation, we exploit a $\textit{feature dimension separation}$ effect inherent in our classifier for further purposes: (1) enhances softmax masking by mitigating feature interference in continual learning and (2) tackles the limitations of mixup on the hypersphere in imbalanced learning. We conducted comprehensive experiments on various datasets and architectures and demonstrated significant performance improvements.
Understanding Convergence and Generalization in Federated Learning through Feature Learning Theory
Wei Huang · Ye Shi · Zhongyi Cai · Taiji Suzuki
Federated Learning (FL) has attracted significant attention as an efficient privacy-preserving approach to distributed learning across multiple clients. Despite extensive empirical research and practical applications, a systematic way to theoretically understand the convergence and generalization properties in FL remains limited. This work aims to establish a unified theoretical foundation for understanding FL through feature learning theory. We focus on a scenario where each client employs a two-layer convolutional neural network (CNN) for local training on their own data. Many existing works analyze the convergence of Federated Averaging (FedAvg) under lazy training with linearizing assumptions in weight space. In contrast, our approach tracks the trajectory of signal learning and noise memorization in FL, eliminating the need for these assumptions. We further show that FedAvg can achieve near-zero test error by effectively increasing signal-to-noise ratio (SNR) in feature learning, while local training without communication achieves a large constant test error. This finding highlights the benefits of communication for generalization in FL. Moreover, our theoretical results suggest that a weighted FedAvg method, based on the similarity of input features across clients, can effectively tackle data heterogeneity issues in FL. Experimental results on both synthetic and real-world datasets verify our theoretical conclusions and emphasize the effectiveness of the weighted FedAvg approach.
Sufficient conditions for offline reactivation in recurrent neural networks
Nanda H Krishna · Colin Bredenberg · Daniel Levenstein · Blake A Richards · Guillaume Lajoie
During periods of quiescence, such as sleep, neural activity in many brain circuits resembles that observed during periods of task engagement. However, the precise conditions under which task-optimized networks can autonomously reactivate the same network states responsible for online behavior is poorly understood. In this study, we develop a mathematical framework that outlines sufficient conditions for the emergence of neural reactivation in circuits that encode features of smoothly varying stimuli. We demonstrate mathematically that noisy recurrent networks optimized to track environmental state variables using change-based sensory information naturally develop denoising dynamics, which, in the absence of input, cause the network to revisit state configurations observed during periods of online activity. We validate our findings using numerical experiments on two canonical neuroscience tasks: spatial position estimation based on self-motion cues, and head direction estimation based on angular velocity cues. Overall, our work provides theoretical support for modeling offline reactivation as an emergent consequence of task optimization in noisy neural circuits.
NeRM: Learning Neural Representations for High-Framerate Human Motion Synthesis
Dong Wei · Huaijiang Sun · Bin Li · Xiaoning Sun · Shengxiang Hu · Weiqing Li · Jianfeng Lu
Generating realistic human motions with high framerate is an underexplored task, due to the varied framerates of training data, huge memory burden brought by high framerates and slow sampling speed of generative models. Recent advances make a compromise for training by downsampling high-framerate details away and discarding low-framerate samples, which suffer from severe information loss and restricted-framerate generation. In this paper, we found that the recent emerging paradigm of Implicit Neural Representations (INRs) that encode a signal into a continuous function can effectively tackle this challenging problem. To this end, we introduce NeRM, a generative model capable of taking advantage of varied-size data and capturing variational distribution of motions for high-framerate motion synthesis. By optimizing latent representation and a auto-decoder conditioned on temporal coordinates, NeRM learns continuous motion fields of sampled motion clips that ingeniously avoid explicit modeling of raw varied-size motions. This expressive latent representation is then used to learn a diffusion model that enables both unconditional and conditional generation of human motions. We demonstrate that our approach achieves competitive results with state-of-the-art methods, and can generate arbitrary framerate motions. Additionally, we show that NeRM is not only memory-friendly, but also highly efficient even when generating high-framerate motions.
Generative Adversarial Equilibrium Solvers
Denizalp Goktas · David Parkes · Ian Gemp · Luke Marris · Georgios Piliouras · Romuald Elie · Guy Lever · Andrea Tacchetti
We introduce the use of generative adversarial learning to compute equilibria in general game-theoretic settings, specifically the generalized Nash equilibrium (GNE) in pseudo-games, and its specific instantiation as the competitive equilibrium (CE) in Arrow-Debreu competitive economies. Pseudo-games are a generalization of games in which players' actions affect not only the payoffs of other players but also their feasible action spaces. Although the computation of GNE and CE is intractable in the worst-case, i.e., PPAD-hard, in practice, many applications only require solutions with high accuracy in expectation over a distribution of problem instances. We introduce Generative Adversarial Equilibrium Solvers (GAES): a family of generative adversarial neural networks that can learn GNE and CE from only a sample of problem instances. We provide computational and sample complexity bounds for Lipschitz-smooth function approximators in a large class of concave pseudo-games, and apply the framework to finding Nash equilibria in normal-form games, CE in Arrow-Debreu competitive economies, and GNE in an environmental economic model of the Kyoto mechanism.
Graph Parsing Networks
Yunchong Song · Siyuan Huang · Xinbing Wang · Chenghu Zhou · Zhouhan Lin
Graph pooling compresses graph information into a compact representation. State-of-the-art graph pooling methods follow a hierarchical approach, which reduces the graph size step-by-step. These methods must balance memory efficiency with preserving node information, depending on whether they use node dropping or node clustering. Additionally, fixed pooling ratios or numbers of pooling layers are predefined for all graphs, which prevents personalized pooling structures from being captured for each individual graph. In this work, inspired by bottom-up grammar induction, we propose an efficient graph parsing algorithm to infer the pooling structure, which then drives graph pooling. The resulting Graph Parsing Network (GPN) adaptively learns personalized pooling structure for each individual graph. GPN benefits from the discrete assignments generated by the graph parsing algorithm, allowing good memory efficiency while preserving node information intact. Experimental results on standard benchmarks demonstrate that GPN outperforms state-of-the-art graph pooling methods in graph classification tasks while being able to achieve competitive performance in node classification tasks. We also conduct a graph reconstruction task to show GPN's ability to preserve node information and measure both memory and time efficiency through relevant tests.
Protein-Ligand Interaction Prior for Binding-aware 3D Molecule Diffusion Models
Zhilin Huang · Ling Yang · Nick Zhou · Zhilong Zhang · Wentao Zhang · Xiawu Zheng · Jie Chen · Yu Wang · Bin CUI · Wenming Yang
Generating 3D ligand molecules that bind to specific protein targets via diffusion models has shown great promise for structure-based drug design. The key idea is to disrupt molecules into noise through a fixed forward process and learn its reverse process to generate molecules from noise in a denoising way. However, existing diffusion models primarily focus on incorporating protein-ligand interaction information solely in the reverse process, and neglect the interactions in the forward process. The inconsistency between forward and reverse processes may impair the binding affinity of generated molecules towards target protein. In this paper, we propose a novel Interaction Prior-guided Diffusion model (IPDiff) for the protein-specific 3D molecular generation by introducing geometric protein-ligand interactions into both diffusion and sampling process. Specifically, we begin by pretraining a protein-ligand interaction prior network (IPNet) by utilizing the binding affinity signals as supervision. Subsequently, we leverage the pretrained prior network to (1) integrate interactions between the target protein and the molecular ligand into the forward process for adapting the molecule diffusion trajectories (prior-shifting), and (2) enhance the binding-aware molecule sampling process (prior-conditioning). Empirical studies on CrossDocked2020 dataset show IPDiff can generate molecules with more realistic 3D structures and state-of-the-art binding affinities towards the protein targets, with up to -6.42 Avg. Vina Score, while maintaining proper molecular properties.
Improved baselines for vision-language pre-training
Jakob Verbeek · Enrico Fini · Michal Drozdzal · Pietro Astolfi · Adriana Romero-Soriano
Approximating Nash Equilibria in Normal-Form Games via Stochastic Optimization
Ian Gemp · Luke Marris · Georgios Piliouras
We propose the first loss function for approximate Nash equilibria of normal-form games that is amenable to unbiased Monte Carlo estimation. This construction allows us to deploy standard non-convex stochastic optimization techniques for approximating Nash equilibria, resulting in novel algorithms with provable guarantees. We complement our theoretical analysis with experiments demonstrating that stochastic gradient descent can outperform previous state-of-the-art approaches.
Learning from Label Proportions: Bootstrapping Supervised Learners via Belief Propagation
Shreyas Havaldar · Navodita Sharma · Shubhi Sareen · Karthikeyan Shanmugam · Aravindan Raghuveer
Learning from Label Proportions (LLP) is a learning problem where only aggregate level labels are available for groups of instances, called bags, during training, and the aim is to get the best performance at the instance-level on the test data. This setting arises in domains like advertising and medicine due to privacy considerations. We propose a novel algorithmic framework for this problem that iteratively performs two main steps. For the first step (Pseudo Labeling) in every iteration, we define a Gibbs distribution over binary instance labels that incorporates a) covariate information through the constraint that instances with similar covariates should have similar labels and b) the bag level aggregated label. We then use Belief Propagation (BP) to marginalize the Gibbs distribution to obtain pseudo labels. In the second step (Embedding Refinement), we use the pseudo labels to provide supervision for a learner that yields a better embedding. Further, we iterate on the two steps again by using the second step's embeddings as new covariates for the next iteration. In the final iteration, a classifier is trained using the pseudo labels. Our algorithm displays strong gains against several SOTA baselines (upto 15%) for the LLP Binary Classification problem on various dataset types - tabular and Image. We achieve these improvements with minimal computational overhead above standard supervised learning due to Belief Propagation, for large bag sizes, even for a million samples.
Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit
Blake Bordelon · Lorenzo Noci · Mufan Li · Boris Hanin · Cengiz Pehlevan
The cost of hyperparameter tuning in deep learning has been rising with model sizes, prompting practitioners to find new tuning methods using a proxy of smaller networks. One such proposal uses $\mu$P parameterized networks, where the optimal hyperparameters for small width networks *transfer* to networks with arbitrarily large width. However, in this scheme, hyperparameters do not transfer across depths. As a remedy, we study residual networks with a residual branch scale of $1/\sqrt{\text{depth}}$ in combination with the $\mu$P parameterization. We provide experiments demonstrating that residual architectures including convolutional ResNets and vision transformers trained with this parameterization exhibit transfer of optimal hyperparameters across width and depth on CIFAR-10 and ImageNet. Furthermore, our empirical findings are supported and motivated by theory. Using recent developments in the dynamical mean field theory (DMFT) description of neural network learning dynamics, we show that this parameterization of ResNets admits a well-defined feature learning joint infinite-width and infinite-depth limit and show convergence of finite-size network dynamics towards this limit.
Multi-scale Transformers with Adaptive Pathways for Time Series Forecasting
Peng Chen · Yingying ZHANG · Yunyao Cheng · Yang Shu · Yihang Wang · Qingsong Wen · Bin Yang · Chenjuan Guo
Transformer-based models have achieved significant success in time series forecasting. Existing methods mainly model time series from limited or fixed scales, making it challenging to capture different characteristics spanning various scales. In this paper, we propose multi-scale transformers with adaptive pathways (Pathformer). The proposed Transformer integrates both temporal resolution and temporal distance for multi-scale modeling. Multi-scale division divides the time series into different temporal resolutions using patches of various sizes. Based on the division of each scale, dual attention is performed over these patches to capture global correlations and local details as temporal dependencies. We further enrich the multi-scale transformer with adaptive pathways, which adaptively adjust the multi-scale modeling process based on the varying temporal dynamics in the input time series, improving the prediction accuracy and generalization of Pathformer. Extensive experiments on nine real-world datasets demonstrate that Pathformer not only achieves state-of-the-art performance by surpassing all current models but also exhibits stronger generalization abilities under various transfer scenarios.
Learning Energy Decompositions for Partial Inference of GFlowNets
Hyosoon Jang · Minsu Kim · Sungsoo Ahn
This paper studies generative flow networks (GFlowNets) to sample objects from the Boltzmann energy distribution via a sequence of actions. In particular, we focus on improving GFlowNet with partial inference: training flow functions with the evaluation of the intermediate states or transitions. To this end, the recently developed forward-looking GFlowNet reparameterizes the flow functions based on evaluating the energy of intermediate states. However, such an evaluation of intermediate energies may (i) be too expensive or impossible to evaluate and (ii) even provide misleading training signals under large energy fluctuations along the sequence of actions. To resolve this issue, we propose learning energy decompositions for GFlowNets (LED-GFN). Our main idea is to (i) decompose the energy of an object into learnable potential functions defined on state transitions and (ii) reparameterize the flow functions using the potential functions. In particular, to produce informative local credits, we propose to regularize the potential to change smoothly over the sequence of actions. It is also noteworthy that training GFlowNet with our learned potential can preserve the optimal policy. We empirically verify the superiority of LED-GFN in five problems including the generation of unstructured and maximum independent sets, molecular graphs, and RNA sequences.
TopoMLP: A Simple yet Strong Pipeline for Driving Topology Reasoning
Dongming Wu · Jiahao Chang · Fan Jia · Yingfei Liu · Tiancai Wang · Jianbing Shen
Topology reasoning aims to comprehensively understand road scenes and present drivable routes in autonomous driving. It requires detecting road centerlines (lane) and traffic elements, further reasoning their topology relationship, \textit{i.e.}, lane-lane topology, and lane-traffic topology. In this work, we first present that the topology score relies heavily on detection performance on lane and traffic elements. Therefore, we introduce a powerful 3D lane detector and an improved 2D traffic element detector to extend the upper limit of topology performance. Further, we propose TopoMLP, a simple yet high-performance pipeline for driving topology reasoning. Based on the impressive detection performance, we develop two simple MLP-based heads for topology generation. TopoMLP achieves state-of-the-art performance on OpenLane-V2 dataset, \textit{i.e.}, 41.2\% OLS with ResNet-50 backbone. It is also the 1st solution for 1st OpenLane Topology in Autonomous Driving Challenge. We hope such simple and strong pipeline can provide some new insights to the community. Code is at https://github.com/wudongming97/TopoMLP.
Meta Continual Learning Revisited: Implicitly Enhancing Online Hessian Approximation via Variance Reduction
Yichen Wu · Long-Kai Huang · Renzhen Wang · Deyu Meng · Ying Wei
Regularization-based methods have so far been among the de facto choices for continual learning. Recent theoretical studies have revealed that these methods all boil down to relying on the Hessian matrix approximation of model weights. However, these methods suffer from suboptimal trade-offs between knowledge transfer and forgetting due to fixed and unchanging Hessian estimations during training.Another seemingly parallel strand of Meta-Continual Learning (Meta-CL) algorithms enforces alignment between gradients of previous tasks and that of the current task. In this work we revisit Meta-CL and for the first time bridge it with regularization-based methods. Concretely, Meta-CL implicitly approximates Hessian in an online manner, which enjoys the benefits of timely adaptation but meantime suffers from high variance induced by random memory buffer sampling. We are thus highly motivated to combine the best of both worlds, through the proposal of Variance Reduced Meta-CL (VR-MCL) to achieve both timely and accurate Hessian approximation.Through comprehensive experiments across three datasets and various settings, we consistently observe that VR-MCL outperforms other SOTA methods, which further validates the effectiveness of VR-MCL.
AMAGO: Scalable In-Context Reinforcement Learning for Adaptive Agents
Jake Grigsby · Jim Fan · Yuke Zhu
We introduce AMAGO, an in-context Reinforcement Learning (RL) agent that uses sequence models to tackle the challenges of generalization, long-term memory, and meta-learning. Recent works have shown that off-policy learning can make in-context RL with recurrent policies viable. Nonetheless, these approaches require extensive tuning and limit scalability by creating key bottlenecks in agents' memory capacity, planning horizon, and model size. AMAGO revisits and redesigns the off-policy in-context approach to successfully train long-sequence Transformers over entire rollouts in parallel with end-to-end RL. Our agent is scalable and applicable to a wide range of problems, and we demonstrate its strong performance empirically in meta-RL and long-term memory domains. AMAGO's focus on sparse rewards and off-policy data also allows in-context learning to extend to goal-conditioned problems with challenging exploration. When combined with a multi-goal hindsight relabeling scheme, AMAGO can solve a previously difficult category of open-world domains, where agents complete many possible instructions in procedurally generated environments.
#InsTag: Instruction Tagging for Analyzing Supervised Fine-tuning of Large Language Models
Keming Lu · Hongyi Yuan · Zheng Yuan · Runji Lin · Junyang Lin · Chuanqi Tan · Chang Zhou · Jingren Zhou
Pre-trained large language models (LLMs) can understand and align with human instructions by supervised fine-tuning (SFT).It is commonly believed that diverse and complex SFT data are of the essence to enable good instruction-following abilities.However, such diversity and complexity are obscure and lack quantitative analyses.In this work, we propose InsTag, an open-set instruction tagging method, to identify semantics and intentions of human instructions by tags that provide access to definitions and quantified analyses of instruction diversity and complexity.We obtain 6.6K fine-grained tags to describe instructions from popular open-sourced SFT datasets comprehensively.We find that the abilities of aligned LLMs benefit from more diverse and complex instructions in SFT data.Based on this observation, we propose a data sampling procedure based on InsTag, and select 6K diverse and complex samples from open-source datasets for SFT.The resulting models, TagLM, outperform open-source models based on considerably larger SFT data evaluated by MT-Bench, echoing the importance of instruction diversity and complexity and the effectiveness of InsTag.InsTag has robust potential to be extended to more applications beyond the data selection as it provides an effective way to analyze the distribution of instructions.
$\texttt{NAISR}$: A 3D Neural Additive Model for Interpretable Shape Representation
Yining Jiao · Carlton ZDANSKI · Julia Kimbell · Andrew Prince · Cameron Worden · Samuel Kirse · Christopher Rutter · Benjamin Shields · William Dunn · Jisan Mahmud · Marc Niethammer
Deep implicit functions (DIFs) have emerged as a powerful paradigm for many computer vision tasks such as 3D shape reconstruction, generation, registration, completion, editing, and understanding. However, given a set of 3D shapes with associated covariates there is at present no shape representation method which allows to precisely represent the shapes while capturing the individual dependencies on each covariate. Such a method would be of high utility to researchers to discover knowledge hidden in a population of shapes. For scientific shape discovery purpose, we propose a 3D Neural Additive Model for Interpretable Shape Representation ($\texttt{NAISR}$) which describes individual shapes by deforming a shape atlas in accordance to the effect of disentangled covariates. Our approach captures shape population trends and allows for patient-specific predictions through shape transfer. $\texttt{NAISR}$ is the first approach to combine the benefits of deep implicit shape representations with an atlas deforming according to specified covariates. We evaluate $\texttt{NAISR}$ with respect to shape reconstruction, shape disentanglement, shape evolution, and shape transfer on three datasets, i.e. 1) $\textit{Starman}$, a simulated 2D shape dataset; 2) ADNI hippocampus 3D shape dataset; 3) pediatric airway 3D shape dataset. Our experiments demonstrate that $\texttt{NAISR}$ achieves competitive shape reconstruction performance while retaining interpretability.
Temporal Generalization Estimation in Evolving Graphs
Bin Lu · Tingyan Ma · Xiaoying Gan · Xinbing Wang · Yunqiang Zhu · Chenghu Zhou · Shiyu Liang
Graph Neural Networks (GNNs) are widely deployed in vast fields, but they often struggle to maintain accurate representations as graphs evolve. We theoretically establish a lower bound, proving that under mild conditions, representation distortion inevitably occurs over time. To estimate the temporal distortion without human annotation after deployment, one naive approach is to pre-train a recurrent model (e.g., RNN) before deployment and use this model afterwards, but the estimation is far from satisfactory. In this paper, we analyze the representation distortion from an information theory perspective, and attribute it primarily to inaccurate feature extraction during evolution. Consequently, we introduce Smart, a straightforward and effective baseline enhanced by an adaptive feature extractor through self-supervised graph reconstruction. In synthetic random graphs, we further refine the former lower bound to show the inevitable distortion over time and empirically observe that Smart achieves good estimation performance. Moreover, we observe that Smart consistently shows outstanding generalization estimation on four real-world evolving graphs. The ablation studies underscore the necessity of graph reconstruction. For example, on OGB-arXiv dataset, the estimation metric MAPE deteriorates from 2.19% to 8.00% without reconstruction.
CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery
YUXIAO CHENG · Ziqian Wang · Tingxiong Xiao · Qin Zhong · Jinli Suo · Kunlun He
Time-series causal discovery (TSCD) is a fundamental problem of machine learning. However, existing synthetic datasets cannot properly evaluate or predict the algorithms' performance on real data. This study introduces the CausalTime pipeline to generate time-series that highly resemble the real data and with ground truth causal graphs for quantitative performance evaluation. The pipeline starts from real observations in a specific scenario and produces a matching benchmark dataset. Firstly, we harness deep neural networks along with normalizing flow to accurately capture realistic dynamics. Secondly, we extract hypothesized causal graphs by performing importance analysis on the neural network or leveraging prior knowledge. Thirdly, we derive the ground truth causal graphs by splitting the causal model into causal term, residual term, and noise term. Lastly, using the fitted network and the derived causal graph, we generate corresponding versatile time-series proper for algorithm assessment. In the experiments, we validate the fidelity of the generated data through qualitative and quantitative experiments, followed by a benchmarking of existing TSCD algorithms using these generated datasets. CausalTime offers a feasible solution to evaluating TSCD algorithms in real applications and can be generalized to a wide range of fields. For easy use of the proposed approach, we also provide a user-friendly website, hosted on www.causaltime.cc.
Reinforcement learning tackles sequential decision-making problems by designing an agent that interacts with the environment. However, existing algorithms often treat the problem as static, calculating a point estimator for model parameters to achieve maximal expected reward (also known as value function) for the agent. They tend to overlook the stochastic nature of the agent-environment interaction system and the importance of uncertainty quantification associated with the model parameters. In our research, leveraging the Kalman filtering paradigm, we introduce a novel and scalable sampling algorithm called Langevinized Kalman Temporal-Difference (LKTD) for deep reinforcement learning. This algorithm, grounded in stochastic gradient Markov chain Monte Carlo (SGMCMC), efficiently draws samples from the posterior distribution of deep neural network parameters. Under mild conditions, we prove that the posterior samples generated by the LKTD algorithm converge to a stationary distribution. This convergence not only enables us to quantify uncertainties associated with the value function and model parameters, but also allows us to monitor these uncertainties during policy updates throughout the training phase. The LKTD algorithm paves the way for more robust and adaptable reinforcement learning approaches.
LEAD: Min-Max Optimization from a Physical Perspective
Guillaume Lajoie · Amartya Mitra · Reyhane Askari Hemmat · Ioannis Mitliagkas
Fully Hyperbolic Convolutional Neural Networks for Computer Vision
Ahmad Bdeir · Kristian Schwethelm · Niels Landwehr
Real-world visual data exhibit intrinsic hierarchical structures that can be represented effectively in hyperbolic spaces. Hyperbolic neural networks (HNNs) are a promising approach for learning feature representations in such spaces. However, current HNNs in computer vision rely on Euclidean backbones and only project features to the hyperbolic space in the task heads, limiting their ability to fully leverage the benefits of hyperbolic geometry. To address this, we present HCNN, a fully hyperbolic convolutional neural network (CNN) designed for computer vision tasks. Based on the Lorentz model, we generalize fundamental components of CNNs and propose novel formulations of the convolutional layer, batch normalization, and multinomial logistic regression. Experiments on standard vision tasks demonstrate the promising performance of our HCNN framework in both hybrid and fully hyperbolic settings. Overall, we believe our contributions provide a foundation for developing more powerful HNNs that can better represent complex structures found in image data. Our code is publicly available at https://github.com/kschwethelm/HyperbolicCV.
Searching for High-Value Molecules Using Reinforcement Learning and Transformers
Raj Ghugare · Santiago Miret · Adriana Hugessen · mariano Phielipp · Glen Berseth
Reinforcement learning (RL) over text representations can be effective for finding high-value policies that can search over graphs. However, RL requires careful structuring of the search space and algorithm design to be effective in this challenge. Through extensive experiments, we explore how different design choices for text grammar and algorithmic choices for training can affect an RL policy's ability to generate molecules with desired properties. We arrive at a new RL-based molecular design algorithm (ChemRLformer) and perform a thorough analysis using 25 molecule design tasks, including computationally complex protein docking simulations. From this analysis, we discover unique insights in this problem space and show that ChemRLformer achieves state-of-the-art performance while being more straightforward than prior work by demystifying which design choices are actually helpful for text-based molecule design.
MAP IT visualizes representations by taking a fundamentally different approach to dimensionality reduction. MAP IT aligns distributions over discrete marginal probabilities in the input space versus the target space, thus capturing information in local regions, as opposed to current methods which align based on individual probabilities between pairs of data points (states) only. The MAP IT theory reveals that alignment based on a projective divergence avoids normalization of weights (to obtain true probabilities) entirely, and further reveals a dual viewpoint via continuous densities and kernel smoothing. MAP IT is shown to produce visualizations which capture class structure better than the current state of the art while being inherently scalable.
Self-Supervised Heterogeneous Graph Learning: a Homophily and Heterogeneity View
YUJIE MO · Feiping Nie · Ping Hu · Heng Tao Shen · Zheng Zhang · Xinchao Wang · Xiaofeng Zhu
Self-supervised heterogeneous graph learning has achieved promising results in various real applications, but it still suffers from the following issues: (i) meta-paths can be employed to capture the homophily in the heterogeneous graph, but meta-paths are human-defined, requiring substantial expert knowledge and computational costs; and (ii) the heterogeneity in the heterogeneous graph is usually underutilized, leading to the loss of task-related information. To solve these issues, this paper proposes to capture both homophily and heterogeneity in the heterogeneous graph without pre-defined meta-paths. Specifically, we propose to learn a self-expressive matrix to capture the homophily from the subspace and nearby neighbors. Meanwhile, we propose to capture the heterogeneity by aggregating the information of nodes from different types. We further design a consistency loss and a specificity loss, respectively, to extract the consistent information between homophily and heterogeneity and to preserve their specific task-related information. We theoretically analyze that the learned homophilous representations exhibit the grouping effect to capture the homophily, and considering both homophily and heterogeneity introduces more task-related information. Extensive experimental results verify the superiority of the proposed method on different downstream tasks.
DMBP: Diffusion model-based predictor for robust offline reinforcement learning against state observation perturbations
Zhihe Yang · Yunjian Xu
Offline reinforcement learning (RL), which aims to fully explore offline datasets for training without interaction with environments, has attracted growing recent attention. A major challenge for the real-world application of offline RL stems from the robustness against state observation perturbations, e.g., as a result of sensor errors or adversarial attacks. Unlike online robust RL, agents cannot be adversarially trained in the offline setting. In this work, we propose Diffusion Model-Based Predictor (DMBP) in a new framework that recovers the actual states with conditional diffusion models for state-based RL tasks. To mitigate the error accumulation issue in model-based estimation resulting from the classical training of conventional diffusion models, we propose a non-Markovian training objective to minimize the sum entropy of denoised states in RL trajectory. Experiments on standard benchmark problems demonstrate that DMBP can significantly enhance the robustness of existing offline RL algorithms against different scales of ran- dom noises and adversarial attacks on state observations. Further, the proposed framework can effectively deal with incomplete state observations with random combinations of multiple unobserved dimensions in the test. Our implementation is available at https://github.com/zhyang2226/DMBP.
Compose and Conquer: Diffusion-Based 3D Depth Aware Composable Image Synthesis
Jonghyun Lee · Hansam Cho · YoungJoon Yoo · Seoung Bum Kim · Yonghyun Jeong
Addressing the limitations of text as a source of accurate layout representation in text-conditional diffusion models, many works incorporate additional signals to condition certain attributes within a generated image. Although successful, previous works do not account for the specific localization of said attributes extended into the three dimensional plane. In this context, we present a conditional diffusion model that integrates control over three-dimensional object placement with disentangled representations of global stylistic semantics from multiple exemplar images. Specifically, we first introduce depth disentanglement training to leverage the relative depth of objects as an estimator, allowing the model to identify the absolute positions of unseen objects through the use of synthetic image triplets. We also introduce soft guidance, a method for imposing global semantics onto targeted regions without the use of any additional localization cues. Our integrated framework, Compose and Conquer (CnC), unifies these techniques to localize multiple conditions in a disentangled manner. We demonstrate that our approach allows perception of objects at varying depths while offering a versatile framework for composing localized objects with different global semantics.
Lemur: Harmonizing Natural Language and Code for Language Agents
Yiheng Xu · Hongjin SU · Chen Xing · Boyu Mi · Qian Liu · Weijia Shi · Binyuan Hui · Fan Zhou · Yitao Liu · Tianbao Xie · Zhoujun Cheng · Siheng Zhao · Lingpeng Kong · Bailin Wang · Caiming Xiong · Tao Yu
We introduce Lemur and Lemur-Chat, openly accessible language models optimized for both natural language and coding capabilities to serve as the backbone of versatile language agents. The evolution from language chat models to fully functional language agents necessitates models to ground natural language instructions effectively in diverse environments and execute valid actions within them, requiring models for the synergy between language and coding capabilities. Lemur and Lemur-Chat are proposed to address this necessity, demonstrating balanced proficiencies in both domains, unlike existing open-source models that tend to specialize in either. Through meticulous pre-training using a code-intensive corpus and instruction fine-tuning on text and code data, our models achieve state-of-the-art averaged performance across diverse text and coding benchmarks. Comprehensive experiments demonstrate Lemur’s superiority over existing open-source models and its proficiency across various agent tasks involving human communication, tool usage, and interaction under fully- and partially- observable environments. The harmonization between natural and programming languages enables Lemur-Chat to significantly narrow the gap with proprietary models on agent abilities, providing key insights into developing advanced open-source agents adept at reasoning, planning, and operating seamlessly across environments. Our model and code will be open-sourced.
ZipIt! Merging Models from Different Tasks without Training
George Stoica · Daniel Bolya · Jakob Bjorner · Pratik Ramesh · Taylor Hearn · Judy Hoffman
Typical deep visual recognition models are capable of performing the one task they were trained on. In this paper, we tackle the extremely difficult problem of combining distinct models with different initializations, each solving a separate task, into one multi-task model without any additional training. Prior work in model merging permutes one model to the space of the other then averages them together. While this works for models trained on the same task, we find that this fails to account for the differences in models trained on disjoint tasks. Thus, we introduce "ZipIt!", a general method for merging two arbitrary models of the same architecture that incorporates two simple strategies. First, in order to account for features that aren’t shared between models, we expand the model merging problem to allow for merging features within each model by defining a general “zip” operation. Second, we add support for partially zipping the models up until a specified layer, naturally creating a multi-head model. We find that these two changes combined account for a staggering 20-60% improvement over prior work, making it feasible to merge models trained on disjoint tasks without retraining.
Unified Generative Modeling of 3D Molecules with Bayesian Flow Networks
Yuxuan Song · Jingjing Gong · Hao Zhou · Mingyue Zheng · Jingjing Liu · Wei-Ying Ma
Advanced generative model (\textit{e.g.}, diffusion model) derived from simplified continuity assumptions of data distribution, though showing promising progress, has been difficult to apply directly to geometry generation applications due to the \textit{multi-modality} and \textit{noise-sensitive} nature of molecule geometry. This work introduces Geometric Bayesian Flow Networks (GeoBFN), which naturally fits molecule geometry by modeling diverse modalities in the differentiable parameter space of distributions. GeoBFN maintains the SE-(3) invariant density modeling property by incorporating equivariant inter-dependency modeling on parameters of distributions and unifying the probabilistic modeling of different modalities. Through optimized training and sampling techniques, we demonstrate that GeoBFN achieves state-of-the-art performance on multiple 3D molecule generation benchmarks in terms of generation quality (90.87\% molecule stability in QM9 and 85.6\% atom stability in GEOM-DRUG\footnote{The scores are reported at 1k sampling steps for fair comparison, and our scores could be further improved if sampling sufficiently longer steps.}). GeoBFN can also conduct sampling with any number of steps to reach an optimal trade-off between efficiency and quality (\textit{e.g.}, 20$\times$ speedup without sacrificing performance).
Equipping agents with the capacity to justify made decisions using supporting evidence represents a cornerstone of accountable decision-making. Furthermore, ensuring that justifications are in line with human expectations and societal norms is vital, especially in high-stakes situations such as healthcare. In this work, we propose the use of a debate-based reward model for reinforcement learning agents, where an outcome of a zero-sum debate game quantifies the justifiability of a decision in a particular state. This reward model is then used to train a justifiable policy, whose decisions can be more easily corroborated with supporting evidence. In the debate game, two argumentative agents take turns providing supporting evidence for two competing decisions. Given the proposed evidence, a proxy of a human judge evaluates which decision is more justified. We demonstrate the potential of our approach in learning policies for prescribing and justifying treatment decisions of septic patients. We show that shaping the reward with the feedback signal generated by the debate-based reward model yields effective policies highly favored by the judge when compared to the policy obtained solely from the environment rewards. Moreover, in terms of the overall performance and justifiability of trained policies, the debate-based feedback is comparable to the feedback obtained from an ideal judge proxy that evaluates decisions using the full information encoded in the state. This suggests that the debate game outputs key information contained in states that is most relevant for evaluating decisions, which in turn substantiates the practicality of combining our approach with human-in-the-loop evaluations. Lastly, we showcase that agents trained via multi-agent debate learn to propose evidence that is resilient to refutations and closely aligns with human preferences.
Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from Offline Data
Chongyi Zheng · Benjamin Eysenbach · Homer Walke · Patrick Yin · Kuan Fang · Ruslan Salakhutdinov · Sergey Levine
Robotic systems that rely primarily on self-supervised learning have the potential to decrease the amount of human annotation and engineering effort required to learn control strategies. In the same way that prior robotic systems have leveraged self-supervised techniques from computer vision (CV) and natural language processing (NLP), our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem: learning to reach any goal without human-specified rewards or labels. Despite the seeming appeal, little (if any) prior work has demonstrated how self-supervised RL methods can be practically deployed on robotic systems. By first studying a challenging simulated version of this task, we discover design decisions about architectures and hyperparameters that increase the success rate by $2 \times$. These findings lay the groundwork for our main result: we demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks, with tasks being specified by a single goal image provided after training.
Towards Robust Offline Reinforcement Learning under Diverse Data Corruption
Rui Yang · Han Zhong · Jiawei Xu · Amy Zhang · Chongjie Zhang · Lei Han · Tong Zhang
Offline reinforcement learning (RL) presents a promising approach for learning reinforced policies from offline datasets without the need for costly or unsafe interactions with the environment. However, datasets collected by humans in real-world environments are often noisy and may even be maliciously corrupted, which can significantly degrade the performance of offline RL. In this work, we first investigate the performance of current offline RL algorithms under comprehensive data corruption, including states, actions, rewards, and dynamics. Our extensive experiments reveal that implicit Q-learning (IQL) demonstrates remarkable resilience to data corruption among various offline RL algorithms. Furthermore, we conduct both empirical and theoretical analyses to understand IQL's robust performance, identifying its supervised policy learning scheme as the key factor. Despite its relative robustness, IQL still suffers from heavy-tail targets of Q functions under dynamics corruption. To tackle this challenge, we draw inspiration from robust statistics to employ the Huber loss to handle the heavy-tailedness and utilize quantile estimators to balance penalization for corrupted data and learning stability. By incorporating these simple yet effective modifications into IQL, we propose a more robust offline RL approach named Robust IQL (RIQL). Extensive experiments demonstrate that RIQL exhibits highly robust performance when subjected to diverse data corruption scenarios.
On gauge freedom, conservativity and intrinsic dimensionality estimation in diffusion models
Christian Horvat · Jean-Pascal Pfister
Diffusion models are generative models that have recently demonstrated impressive performances in terms of sampling quality and density estimation in high dimensions. They rely on a forward continuous diffusion process and a backward continuous denoising process, which can be described by a time-dependent vector field and is used as a generative model. In the original formulation of the diffusion model, this vector field is assumed to be the score function (i.e. it is the gradient of the log-probability at a given time in the diffusion process). Curiously, on the practical side, most studies on diffusion models implement this vector field as a neural network function and do not constrain it be the gradient of some energy function (that is, most studies do not constrain the vector field to be conservative). Even though some studies investigated empirically whether such a constraint will lead to a performance gain with contradicting results, they lack analytical evidence. Here, we provide three analytical results regarding the extent of the modeling freedom of this vector field. Firstly, we show that to obtain exact density estimation and exact sampling, it is neither necessary nor sufficient to assume the vector field to be conservative. Secondly, we derive the full (gauge) freedom satisfied by the vector field. Finally, we show that when it comes to inferring local information of the data manifold, conservativity is sufficient. In particular, we provide a novel algorithm to infer the intrinsic dimensionality of manifolds based on diffusion models.
Revisit and Outstrip Entity Alignment: A Perspective of Generative Models
Lingbing Guo · Zhuo Chen · Jiaoyan Chen · Yin Fang · Wen Zhang · Huajun Chen
Recent embedding-based methods have achieved great successes in exploiting entity alignment from knowledge graph (KG) embeddings of multiple modalities. In this paper, we study embedding-based entity alignment (EEA) from a perspective of generative models. We show that EEA shares similarities with typical generative models and prove the effectiveness of the recently developed generative adversarial network (GAN)-based EEA methods theoretically. We then reveal that their incomplete objective limits the capacity on both entity alignment and entity synthesis (i.e., generating new entities). We mitigate this problem by introducing a generative EEA (GEEA) framework with the proposed mutual variational autoencoder (M-VAE) as the generative model. M-VAE enables entity conversion between KGs and generation of new entities from random noise vectors. We demonstrate the power of GEEA with theoretical analysis and empirical experiments on both entity alignment and entity synthesis tasks.
DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models
Zhenting Wang · Chen Chen · Lingjuan Lyu · Dimitris Metaxas · Shiqing Ma
Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized data usage during the training or fine-tuning process. One example is when a model trainer collects a set of images created by a particular artist and attempts to train a model capable of generating similar images without obtaining permission and giving credit to the artist. To address this issue, we propose a method for detecting such unauthorized data usage by planting the injected memorization into the text-to-image diffusion models trained on the protected dataset. Specifically, we modify the protected images by adding unique contents on these images using stealthy image warping functions that are nearly imperceptible to human but can be captured and memorized by diffusion models. By analyzing whether the model has memorized the injected content (i.e., whether the generated images are processed by the injected post-processing function), we can detect models that had illegally utilized the unauthorized data. Experiments on Stable Diffusion and VQ Diffusion with different model training or fine-tuning methods (i.e, LoRA, DreamBooth, and standard training) demonstrate the effectiveness of our proposed method in detecting unauthorized data usages.
In-context Autoencoder for Context Compression in a Large Language Model
Tao Ge · Hu Jing · Lei Wang · Xun Wang · Si-Qing Chen · Furu Wei
We propose the In-context Autoencoder (ICAE), leveraging the power of a large language models (LLM) to compress a long context into short compact memory slots that can be directly conditioned on by the LLM for various purposes. ICAE is first pretrained using both autoencoding and language modeling objectives on massive text data, enabling it to generate memory slots that accurately and comprehensively represent the original context; Then, it is fine-tuned on instruction data for producing desirable responses to various prompts. Experiments demonstrate that our lightweight ICAE, introducing fewer than 1% additional parameters, effectively achieves $4\times$ context compression based on Llama, offering advantages in both improved latency and GPU memory cost during inference, and showing an interesting insight in memorization as well as potential for scalability. These promising results imply a novel perspective on the connection between working memory in cognitive science and representation learning in LLMs, revealing ICAE's significant implications in addressing the long context problem and suggesting further research in LLM context management. Our data, code and model will be released.
Popular machine learning approaches forgo second-order information due to the difficulty of computing curvature in high dimensions.We present FOSI, a novel meta-algorithm that improves the performance of any base first-order optimizer by efficiently incorporating second-order information during the optimization process.In each iteration, FOSI implicitly splits the function into two quadratic functions defined on orthogonal subspaces, then uses a second-order method to minimize the first, and the base optimizer to minimize the other.We formally analyze FOSI's convergence and the conditions under which it improves a base optimizer.Our empirical evaluation demonstrates that FOSI improves the convergence rate and optimization time of first-order methods such as Heavy-Ball and Adam, and outperforms second-order methods (K-FAC and L-BFGS).
Supervised Knowledge Makes Large Language Models Better In-context Learners
Linyi Yang · Shuibai Zhang · Zhuohao Yu · Guangsheng Bao · Yidong Wang · Jindong Wang · Ruochen Xu · Wei Ye · Xing Xie · Weizhu Chen · Yue Zhang
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering. The recent progress in large-scale generative models has further expanded their use in real-world language applications. However, the critical challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored. While previous in-context learning research has focused on enhancing models to adhere to users' specific instructions and quality expectations, and to avoid undesired outputs, little to no work has explored the use of task-specific fine-tuned Language Models (SLMs) to improve LLMs' in-context learning during the inference stage. Our primary contribution is the establishment of a simple yet effective framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks. Using our proposed plug-in method, enhanced versions of Llama 2 and ChatGPT surpass their original versions regarding generalizability and factuality. We offer a comprehensive suite of resources, including 16 curated datasets, prompts, model checkpoints, and LLM outputs across 9 distinct tasks. Our empirical analysis sheds light on the advantages of incorporating discriminative models into LLMs and highlights the potential of our methodology in fostering more reliable LLMs.
Federated Recommendation with Additive Personalization
Zhiwei Li · Guodong Long · Tianyi Zhou
Building recommendation systems via federated learning (FL) is a new emerging challenge for next-generation Internet service. Existing FL models share item embedding across clients while keeping the user embedding private and local on the client side. However, identical item embedding cannot capture users' individual differences in perceiving the same item and may lead to poor personalization. Moreover, dense item embedding in FL results in expensive communication costs and latency. To address these challenges, we propose Federated Recommendation withAdditive Personalization (FedRAP), which learns a global view of items via FL and a personalized view locally on each user. FedRAP encourages a sparse global view to save FL's communication cost and enforces the two views to be complementary via two regularizers. We propose an effective curriculum to learn the local and global views progressively with increasing regularization weights. To produce recommendations for a user, FedRAP adds the two views together to obtain a personalized item embedding. FedRAP achieves the best performance in FL setting on multiple benchmarks. It outperforms recent federated recommendation methods and several ablation study baselines. Our code is available at https://github.com/mtics/FedRAP.
Towards Establishing Guaranteed Error for Learned Database Operations
Sepanta Zeighami · Cyrus Shahabi
Machine learning models have demonstrated substantial performance enhancements over non-learned alternatives in various fundamental data management operations, including indexing (locating items in an array), cardinality estimation (estimating the number of matching records in a database), and range-sum estimation (estimating aggregate attribute values for query-matched records). However, real-world systems frequently favor less efficient non-learned methods due to their ability to offer (worst-case) error guarantees — an aspect where learned approaches often fall short. The primary objective of these guarantees is to ensure system reliability, ensuring that the chosen approach consistently delivers the desired level of accuracy across all databases. In this paper, we embark on the first theoretical study of such guarantees for learned methods, presenting the necessary conditions for such guarantees to hold when using machine learning to perform indexing, cardinality estimation and range-sum estimation. Specifically, we present the first known lower bounds on the model size required to achieve the desired accuracy for these three key database operations. Our results bound the required model size for given average and worst-case errors in performing database operations, serving as the first theoretical guidelines governing how model size must change based on data size to be able to guarantee an accuracy level. More broadly, our established guarantees pave the way for the broader adoption and integration of learned models into real-world systems.
GenSim: Generating Robotic Simulation Tasks via Large Language Models
Lirui Wang · Yiyang Ling · Zhecheng Yuan · Mohit Shridhar · Chen Bao · Yuzhe Qin · Bailin Wang · Huazhe Xu · Xiaolong Wang
Collecting large amounts of real-world interaction data to train general robotic policies is often prohibitively expensive, thus motivating the use of simulation data. However, existing methods for data generation have generally focused on scene-level diversity (e.g., object instances and poses) rather than task-level diversity, due to the human effort required to come up with and verify novel tasks. This has made it challenging for policies trained on simulation data to demonstrate significant task-level generalization. In this paper, we propose to automatically generate rich simulation environments and expert demonstrations by exploiting a large language models' (LLM) grounding and coding ability. Our approach, dubbed GenSim, has two modes: goal-directed generation, wherein a target task is given to the LLM and the LLM proposes a task curriculum to solve the target task, and exploratory generation, wherein the LLM bootstraps from previous tasks and iteratively proposes novel tasks that would be helpful in solving more complex tasks. We use GPT4 to expand the existing benchmark by ten times to over 100 tasks, on which we conduct supervised finetuning and evaluate several LLMs including finetuned GPTs and Code Llama on code generation for robotic simulation tasks. Furthermore, we observe that LLMs-generated simulation programs can enhance task-level generalization significantly when used for multitask policy training. We further find that with minimal sim-to-real adaptation, the multitask policies pretrained on GPT4-generated simulation tasks exhibit stronger transfer to unseen long-horizon tasks in the real world and outperform baselines by 25%. See our project website (https://gen-sim.github.io) and demo (https://huggingface.co/spaces/Gen-Sim/Gen-Sim) for visualizations and open-source models and datasets.
Set Learning for Accurate and Calibrated Models
Lukas Muttenthaler · Robert A Vandermeulen · Qiuyi Zhang · Thomas Unterthiner · Klaus R Muller
Model overconfidence and poor calibration are common in machine learning and difficult to account for when applying standard empirical risk minimization. In this work, we propose a novel method to alleviate these problems that we call odd-$k$-out learning (OKO), which minimizes the cross-entropy error for sets rather than for single examples. This naturally allows the model to capture correlations across data examples and achieves both better accuracy and calibration, especially in limited training data and class-imbalanced regimes. Perhaps surprisingly, OKO often yields better calibration even when training with hard labels and dropping any additional calibration parameter tuning, such as temperature scaling. We demonstrate this in extensive experimental analyses and provide a mathematical theory to interpret our findings. We emphasize that OKO is a general framework that can be easily adapted to many settings and a trained model can be applied to single examples at inference time, without significant run-time overhead or architecture changes.
CODE REPRESENTATION LEARNING AT SCALE
Dejiao Zhang · Wasi Ahmad · Ming Tan · Hantian Ding · Ramesh Nallapati · Dan Roth · Xiaofei Ma · Bing Xiang
Recent studies have shown that code language model at scale demonstrate significant performance gains on downstream tasks, i.e., code generation. However, most of the existing works on code representation learning train models at a hundred million parameter scale using very limited pretraining corpora. In this work, we fuel code representation learning with a vast amount of code data via a two-stage pretraining scheme. We first train the encoders via a mix that leverages both randomness in masking language modeling and the structure aspect of programming language. We then enhance the representations via contrastive learning with hard negative and hard positive constructed in an unsupervised manner. We establish an off-the-shelf encoder model that persistently outperforms the existing models on a wide variety of downstream tasks by large margins. To comprehend the factors contributing to successful code representation learning, we conduct detailed ablations and share our findings on (i) a customized and effective token-level denoising scheme for source code; (ii) the importance of hard negatives and hard positives; (iii) how the proposed bimodal contrastive learning boost the cross-lingual semantic search performance; and (iv) how the pretraining schemes decide the downstream task performance scales with the model size.
Who to imitate: Imitating desired behavior from divserse multi-agent datasets
Tim Franzmeyer · Jakob Foerster · Edith Elkind · Philip Torr · Joao F. Henriques
AI agents are commonly trained with large datasets of demonstrations of human behavior.However, not all behaviors are equally safe or desirable.Desired characteristics for an AI agent can be expressed by assigning desirability scores, which we assume are assigned to collective trajectories, but not to individual behaviors.For example, in a dataset of vehicle interactions, these scores might relate to the number of incidents that occurred. We first assess the effect of each individual agent's behavior on the collective desirability score, e.g., assessing how likely an agent is to cause incidents.This allows us to afterward only imitate agents with desired behavior, e.g., only imitating agents that are unlikely to cause incidents. To enable this, we propose the concept of an agent's \textit{Exchange Value}, which quantifies an individual agent's contribution to the collective desirability score. This is expressed as the expected change in desirability score when substituting the agent for a randomly selected agent.We propose additional methods for estimating Exchange Values from real-world datasets, enabling us to learn aligned imitation policies that outperform relevant baselines.
Image2Sentence based Asymmetrical Zero-shot Composed Image Retrieval
Yongchao Du · Min Wang · Wengang Zhou · Shuping Hui · Houqiang Li
The task of composed image retrieval (CIR) aims to retrieve images based on the query image and the text describing the users' intent. Existing methods have made great progress with the advanced large vision-language (VL) model in CIR task, however, they generally suffer from two main issues: lack of labeled triplets for model training and difficulty of deployment on resource-restricted environments when deploying the large vision-language model. To tackle the above problems, we propose Image2Sentence based Asymmetric zero-shot composed image retrieval (ISA), which takes advantage of the VL model and only relies on unlabeled images for composition learning. In the framework, we propose a new adaptive token learner that maps an image to a sentence in the word embedding space of VL model. The sentence adaptively captures discriminative visual information and is further integrated with the text modifier. An asymmetric structure is devised for flexible deployment, in which the lightweight model is adopted for the query side while the large VL model is deployed on the gallery side. The global contrastive distillation and the local alignment regularization are adopted for the alignment between the light model and the VL model for CIR task. Our experiments demonstrate that the proposed ISA could better cope with the real retrieval scenarios and further improve retrieval accuracy and efficiency.
How Well Do Supervised Models Transfer to 3D Image Segmentation?
Wenxuan Li · Alan Yuille · Zongwei Zhou
The pre-training and fine-tuning paradigm has become prominent in transfer learning. For example, if the model is pre-trained on ImageNet and then fine-tuned to PASCAL, it can significantly outperform that trained directly on PASCAL. While ImageNet pre-training has shown enormous success, it is formed in 2D and the learned features are for classification tasks. Therefore, when transferring to more diverse tasks, like 3D image segmentation, its performance is inevitably compromised due to the deviation from the original ImageNet context. A significant challenge lies in the lack of large, annotated 3D datasets rivaling the scale of ImageNet for model pre-training. To overcome this challenge, we make two contributions. Firstly, we construct ImageNetCT-9K that comprises 9,262 three-dimensional computed tomography (CT) volumes with high-quality, per-voxel annotations. Secondly, we develop a suite of models that is supervised pre-trained on our ImageNetCT-9K. Our preliminary analyses indicate that the model trained only with 20 CT volumes, 640 masks, and 40 GPU hours has a transfer learning ability similar to the model trained with 5,050 CT volumes and 1,152 GPU hours. More importantly, the transfer learning ability of supervised models can further scale up with larger annotated datasets (i.e., SPT), achieving significantly better performance than all existing 3D models, irrespective of their pre-training methodologies or sources. We hope this study can facilitate collective efforts in constructing larger 3D vision datasets and more releases of supervised pre-trained models. Our code is attached as supplementary and will be publicly available.
Multimodal pre-trained models have shown impressive potential in enhancing performance on downstream tasks. However, existing fusion strategies for modalities primarily rely on explicit interaction structures that fail to capture the diverse aspects and patterns inherent in input data. This yields limited performance in zero-shot contexts, especially when fine-grained classifications and abstract interpretations are required. To address this, we propose an effective approach, namely Prompt Learning with Quaternion Networks (QNet), for semantic alignment across diverse modalities. QNet employs a quaternion hidden space where the mutually orthogonal imaginary axes capture rich intermodal semantic spatial correlations from various perspectives. Hierarchical features across multilayers are utilized to encode intricate interdependencies within various modalities with reduced parameters. Our experiments on 11 datasets demonstrate that QNet outperforms state-of-the-art prompt learning techniques in base-to-novel generalization, cross-dataset transfer, and domain transfer scenarios with fewer learnable parameters. Our code and models will be publicly available.
On Penalty Methods for Nonconvex Bilevel Optimization and First-Order Stochastic Approximation
Jeongyeol Kwon · Dohyun Kwon · Stephen Wright · Robert Nowak
In this work, we study first-order algorithms for solving Bilevel Optimization (BO) where the objective functions are smooth but possibly nonconvex in both levels and the variables are restricted to closed convex sets. As a first step, we study the landscape of BO through the lens of penalty methods, in which the upper- and lower-level objectives are combined in a weighted sum with penalty parameter $\sigma > 0$. In particular, we establish a strong connection between the penalty function and the hyper-objective by explicitly characterizing the conditions under which the values and derivatives of the two must be $O(\sigma)$-close. A by-product of our analysis is the explicit formula for the gradient of hyper-objective when the lower-level problem has multiple solutions under minimal conditions, which could be of independent interest. Next, viewing the penalty formulation as $O(\sigma)$-approximation of the original BO, we propose first-order algorithms that find an $\epsilon$-stationary solution by optimizing the penalty formulation with $\sigma = O(\epsilon)$. When the perturbed lower-level problem uniformly satisfies the {\it small-error} proximal error-bound (EB) condition, we propose a first-order algorithm that converges to an $\epsilon$-stationary point of the penalty function using in total $O(\epsilon^{-7})$ accesses to first-order stochastic gradient oracles. Under an additional assumption on stochastic oracles, we show that the algorithm can be implemented in a fully {\it single-loop} manner, {\it i.e.,} with $O(1)$ samples per iteration, and achieves the improved oracle-complexity of $O(\epsilon^{-5})$.
Prompt Gradient Projection for Continual Learning
Jingyang Qiao · Zhizhong Zhang · Xin Tan · Chengwei Chen · Yanyun Qu · Yong Peng · Yuan Xie
Prompt-tuning has demonstrated impressive performance in continual learning by querying relevant prompts for novel classes training. Its forgetting is therefore reduced as this instance-wise query mechanism enables us to select and update only relevant prompts. In this paper, we further integrate prompt-tuning with gradient projection approach. Our observation is: prompt-tuning releases the necessity of task identifier for gradient projection method; and gradient projection provides theoretical guarantees against forgetting for prompt-tuning. This inspires a new prompt gradient projection approach (PGP) for continual learning. In PGP, we deduce the orthogonal condition for prompt gradient via the self-attention mechanism in vision-transformer. The condition equations are then solved by conducting Singular Value Decomposition (SVD) on an element-wise sum space between input space and prompt space. We validate our method on diverse datasets and experiments demonstrate the efficiency of reducing forgetting both in class incremental, online class incremental, and task incremental settings.
Consistency Training with Learnable Data Augmentation for Graph Anomaly Detection with Limited Supervision
Nan Chen · Zemin Liu · Bryan Hooi · Bingsheng He · Rizal Fathony · Jun Hu · Jia Chen
Graph Anomaly Detection (GAD) has surfaced as a significant field of research, predominantly due to its substantial influence in production environments. Although existing approaches for node anomaly detection have shown effectiveness, they have yet to fully address two major challenges: operating in settings with limited supervision and managing class imbalance effectively. In response to these challenges, we propose a novel model, ConsisGAD, which is tailored for GAD in scenarios characterized by limited supervision and is anchored in the principles of consistency training. Under limited supervision, ConsisGAD effectively leverages the abundance of unlabeled data for consistency training by incorporating a novel learnable data augmentation mechanism, thereby introducing controlled noise into the dataset. Moreover, ConsisGAD takes advantage of the variance in homophily distribution between normal and anomalous nodes to craft a simplified GNN backbone, enhancing its capability to distinguish effectively between these two classes. Comprehensive experiments on several benchmark datasets validate the superior performance of ConsisGAD in comparison to state-of-the-art baselines.
Perception is often viewed as a process that transforms physical variables, external to an observer, into internal psychological variables. Such a process can be modeled by a function coined perceptual scale. The perceptual scale can be deduced from psychophysical measurements that consist in comparing the relative differences between stimuli (i.e. difference scaling experiments). However, this approach is often overlooked by the modeling and experimentation communities. Here, we demonstrate the value of measuring the perceptual scale of classical (spatial frequency, orientation) and less classical physical variables (interpolation between textures) by embedding it in recent probabilistic modeling of perception. First, we show that the assumption that an observer has an internal representation of univariate parameters such as spatial frequency or orientation while stimuli are high-dimensional does not lead to contradictory predictions when following the theoretical framework. Second, we show that the measured perceptual scale corresponds to the transduction function hypothesized in this framework. In particular, we demonstrate that it is related to the Fisher information of the generative model that underlies perception and we test the predictions given by the generative model of different stimuli in a set a of difference scaling experiments. Our main conclusion is that the perceptual scale is mostly driven by the stimulus power spectrum. Finally, we propose that this measure of perceptual scale is a way to push further the notion of perceptual distances by estimating the perceptual geometry of images i.e. the path between images instead of simply the distance between those.
Stochastic Controlled Averaging for Federated Learning with Communication Compression
Xinmeng Huang · Ping Li · Xiaoyun Li
Communication compression has gained great interest in Federated Learning(FL) for the potential of alleviating its communication overhead. However, com-munication compression brings forth new challenges in FL due to the interplayof compression-incurred information distortion and inherent characteristics of FLsuch as partial participation and data heterogeneity. Despite the recent develop-ment, the existing approaches either cannot accommodate arbitrary data hetero-geneity or partial participation, or require stringent conditions on compression.In this paper, we revisit the seminal stochastic controlled averaging method byproposing an equivalent but more efficient/simplified formulation with halved up-link communication costs, building upon which we propose two compressed FLalgorithms, SCALLION and SCAFCOM, to support unbiased and biased com-pression, respectively. Both the proposed methods outperform the existing com-pressed FL methods in terms of communication and computation complexities.Moreover, SCALLION and SCAFCOM attain fast convergence rates under ar-bitrary data heterogeneity and without any additional assumptions on compressionerrors. Experiments show that SCALLION and SCAFCOM outperform recentcompressed FL methods under the same communication budget.
GPAvatar: Generalizable and Precise Head Avatar from Image(s)
Xuangeng Chu · Yu Li · Ailing Zeng · Tianyu Yang · Lijian Lin · Yunfei Liu · Tatsuya Harada
Head avatar reconstruction, crucial for applications in virtual reality, online meetings, gaming, and film industries, has garnered substantial attention within the computer vision community. The fundamental objective of this field is to faithfully recreate the head avatar and precisely control expressions and postures. Existing methods, categorized into 2D-based warping, mesh-based, and neural rendering approaches, present challenges in maintaining multi-view consistency, incorporating non-facial information, and generalizing to new identities. In this paper, we propose a framework named GPAvatar that reconstructs 3D head avatars from one or several images in a single forward pass. The key idea of this work is to introduce a dynamic point-based expression field driven by a point cloud to precisely and effectively capture expressions. Furthermore, we use a Multi Tri-planes Attention (MTA) fusion module in tri-planes canonical field to leverage information from multiple input images. The proposed method achieves faithful identity reconstruction, precise expression control, and multi-view consistency, demonstrating promising results for free-viewpoint rendering and novel view synthesis.
Neural Optimal Transport with General Cost Functionals
Arip Asadulaev · Alexander Korotin · Vage Egiazarian · Petr Mokrov · Evgeny Burnaev
We introduce a novel neural network-based algorithm to compute optimal transport (OT) plans for general cost functionals. In contrast to common Euclidean costs, i.e., $\ell^1$ or $\ell^2$, such functionals provide more flexibility and allow using auxiliary information, such as class labels, to construct the required transport map. Existing methods for general costs are discrete and have limitations in practice, i.e. they do not provide an out-of-sample estimation. We address the challenge of designing a continuous OT approach for general costs that generalizes to new data points in high-dimensional spaces, such as images. Additionally, we provide the theoretical error analysis for our recovered transport plans. As an application, we construct a cost functional to map data distributions while preserving the class-wise structure.
Fantastic Generalization Measures are Nowhere to be Found
Ido Nachum · Jonathan Shafer · Thomas Weinberger · Michael Gastpar
Numerous generalization bounds have been proposed in the literature as potential explanations for the ability of neural networks to generalize in the overparameterized setting. However, none of these bounds are tight. For instance, in their paper “Fantastic Generalization Measures and Where to Find Them”, Jiang et al. (2020) examine more than a dozen generalization bounds, and show empirically that none of them imply guarantees that can explain the remarkable performance of neural networks. This raises the question of whether tight generalization bounds are at all possible. We consider two types of generalization bounds common in the literature: (1) bounds that depend on the training set and the output of the learning algorithm. There are multiple bounds of this type in the literature (e.g., norm- and margin-based bounds), but we prove mathematically that no such bound can be uniformly tight in the overparameterized setting; (2) bounds that depend on the training set and on the learning algorithm (e.g., stability bounds). For these bounds, we show a trade-off between the algorithm's performance and the bound's tightness. Namely, under mild assumptions, if the algorithm achieves good accuracy in the overparameterized setting, then no generalization bound can be tight for it. We conclude that generalization bounds in the overparameterized setting cannot be tight without suitable assumptions on the population distribution.
Cleanba: A Reproducible and Efficient Distributed Reinforcement Learning Platform
Shengyi Huang · Jiayi Weng · Rujikorn Charakorn · Min Lin · Zhongwen Xu · Santiago Ontanon
Distributed Deep Reinforcement Learning (DRL) aims to leverage more computational resources to train autonomous agents with less training time. Despite recent progress in the field, reproducibility issues have not been sufficiently explored. This paper first shows that the typical actor-learner framework can have reproducibility issues even if hyperparameters are controlled. We then introduce Cleanba, a new open-source platform for distributed DRL that proposes a highly reproducible architecture. Cleanba implements highly optimized distributed variants of PPO and IMPALA. Our Atari experiments show that these variants can obtain equivalent or higher scores than strong IMPALA baselines in moolib and torchbeast and PPO baseline in CleanRL. However, Cleanba variants present 1) shorter training time and 2) more reproducible learning curves in different hardware settings.
Normalising Flows are non-parametric statistical models known for their dual capabilities of density estimation and generation. They are distinguished by their inherently invertible architecture. However, the requirement of invertibility imposes constraints on their expressiveness, necessitating a large number of parameters and innovative architectural designs to achieve satisfactory outcomes. Whilst flow-based models predominantly rely on neural-network-based transformations for expressive designs, alternative transformation methods have received limited attention. In this work, we present Ferumal flow, a novel kernelised normalising flow paradigm that integrates kernels into the framework. Our results demonstrate that a kernelised flow can yield competitive or superior results compared to neural network-based flows whilst maintaining parameter efficiency. Kernelised flows excel especially in the low-data regime, enabling flexible non-parametric density estimation in applications with sparse data availability.
The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks.
Aaron Spieler · Nasim Rahaman · Georg Martius · Bernhard Schoelkopf · Anna Levina
Biological cortical neurons are remarkably sophisticated computational devices,temporally integrating their vast synaptic input over an intricate dendritic tree,subject to complex, nonlinearly interacting internal biological processes. A recentstudy proposed to characterize this complexity by fitting accurate surrogate modelsto replicate the input-output relationship of a detailed biophysical cortical pyramidalneuron model and discovered it needed temporal convolutional networks (TCN)with millions of parameters. Requiring these many parameters, however, couldbe the result of a misalignment between the inductive biases of the TCN andcortical neuron’s computations. In light of this, and with the aim to explorethe computational implications of leaky memory units and nonlinear dendriticprocessing, we introduce the Expressive Leaky Memory (ELM) neuron model, abiologically inspired phenomenological model of a cortical neuron. Remarkably, byexploiting a few such slowly decaying memory-like hidden states and two-layerednonlinear integration of synaptic input, our ELM neuron can accurately matchthe aforementioned input-output relationship with under ten-thousand trainableparameters. To further assess the computational ramifications of our neuron design,we evaluate on various tasks with demanding temporal structures, including theLong Range Arena (LRA) datasets, as well as a novel neuromorphic dataset basedon the Spiking Heidelberg Digits dataset (SHD-Adding). Leveraging a largernumber of memory units with sufficiently long timescales, and correspondinglysophisticated synaptic integration, the ELM neuron proves to be competitive onboth datasets, reliably outperforming the classic Transformer or Chrono-LSTMarchitectures on latter, even solving the Pathfinder-X task with over 70\% accuracy(16k context length). These findings indicate the importance of inductive biasesfor efficient surrogate neuron models and the potential for biologically motivatedmodels to enhance performance in challenging machine learning tasks.
Generating a set of text is a common challenge for many NLP applications, for example, automatically providing multiple keyphrases for a document to facilitate user reading. Existing generative models use a sequential decoder which generates a single sequence successively, and the set generation problem is converted to sequence generation via concatenating multiple texts into a long text sequence. However, the elements of a set are unordered, which makes this scheme suffer from biased or conflicting training signals. In this paper, we propose a novel branching decoder. It can generate a dynamic number of tokens at each time-step and branch multiple generation paths. In particular, paths are generated individually so that no order dependence is required. Moreover, multiple paths can be generated in parallel which greatly reduces inference time. Experiments on three keyphrase generation datasets demonstrate that our branching decoder is more effective and efficient than the existing sequential decoder.
We propose Consistency-guided Prompt learning (CoPrompt), a new fine-tuning method for vision-language models. Our approach improves the generalization of large foundation models when fine-tuned on downstream tasks in a few-shot setting. The basic idea of CoPrompt is to enforce a consistency constraint in the prediction of the trainable and pre-trained models to prevent overfitting on the downstream task. Additionally, we introduce the following two components into our consistency constraint to further boost the performance: enforcing consistency on two perturbed inputs and combining two dominant paradigms of tuning, prompting and adapter. Enforcing consistency on perturbed input serves to further regularize the consistency constraint, thereby improving generalization. Moreover, the integration of adapters and prompts not only enhances performance on downstream tasks but also offers increased tuning flexibility in both input and output spaces. This facilitates more effective adaptation to downstream tasks in a few-shot learning setting. Experiments show that CoPrompt outperforms existing methods on a range of evaluation suites, including base-to-novel generalization, domain generalization, and cross-dataset evaluation. On generalization, CoPrompt improves the state-of-the-art on zero-shot tasks and the overall harmonic mean over 11 datasets. Detailed ablation studies show the effectiveness of each of the components in CoPrompt. We make our code available at https://github.com/ShuvenduRoy/CoPrompt.
Scaling Laws for Sparsely-Connected Foundation Models
Elias Frantar · Carlos Riquelme Ruiz · Neil Houlsby · Dan Alistarh · Utku Evci
We explore the impact of parameter sparsity on the scaling behavior of Transformers trained on massive datasets (i.e., "foundation models"), in both vision and language domains. In this setting, we identify the first scaling law describing the relationship between weight sparsity, number of non-zero parameters, and amount of training data, which we validate empirically across model and data scales; on ViT/JFT-4B and T5/C4. These results allow us to characterize the "optimal sparsity", the sparsity level which yields the best performance for a given effective model size and training budget. For a fixed number of non-zero parameters, we identify that the optimal sparsity increases with the amount of data used for training. We also extend our study to different sparsity structures (such as the hardware-friendly n:m pattern) and strategies (such as starting from a pretrained dense model). Our findings shed light on the power and limitations of weight sparsity across various parameter and computational settings, offering both theoretical understanding and practical implications for leveraging sparsity towards computational efficiency improvements.
Step-Back Prompting Enables Reasoning Via Abstraction in Large Language Models
Huaixiu Steven Zheng · Swaroop Mishra · Xinyun Chen · Heng-Tze Cheng · Ed H. Chi · Quoc V Le · Denny Zhou
We present Step-Back Prompting, a simple prompting technique that enables LLMs to do abstractions to derive high-level concepts and first principles from instances containing specific details. Using the concepts and principles to guide the reasoning steps, LLMs significantly improve their abilities in following a correct reasoning path towards the solution. We conduct experiments of Step-Back Prompting with PaLM-2 models and observe substantial performance gains on a wide range of challenging reasoning-intensive tasks including STEM, Knowledge QA, and Multi-Hop Reasoning. For instance, Step-Back Prompting improves PaLM-2L performance on MMLU Physics and Chemistry by 7% and 11%, TimeQA by 34%, and MuSiQue by 7%.
Towards Universal Multi-Modal Personalization: A Language Model Empowered Generative Paradigm
Tianxin Wei · Bowen Jin · Ruirui Li · Hansi Zeng · Zhengyang Wang · Jianhui Sun · Qingyu Yin · Hanqing Lu · Suhang Wang · Jingrui He · Xianfeng Tang
Developing a universal model that can effectively harness heterogeneous resources and respond to a wide range of personalized needs has been a longstanding community aspiration. Our daily choices, especially in domains like fashion and retail, are substantially shaped by multi-modal data, such as pictures and textual descriptions. These modalities not only offer intuitive guidance but also cater to personalized user preferences. However, the predominant personalization approaches mainly focus on ID or text-based recommendation problem, failing to comprehend the information spanning various tasks or modalities. In this paper, our goal is to establish a Unified paradigm for Multi-modal Personalization systems (UniMP), which effectively leverages multi-modal data while eliminating the complexities associated with task- and modality-specific customization. We argue that the advancements in foundational generative modeling have provided the flexibility and effectiveness necessary to achieve the objective. In light of this, we develop a generic and extensible personalization generative framework, that can handle a wide range of personalized needs including item recommendation, product search, preference prediction, explanation generation, and further user-guided image generation. Our methodology enhances the capabilities of foundational language models for personalized tasks by seamlessly ingesting interleaved cross-modal user history information, ensuring a more precise and customized experience for users. To train and evaluate the proposed multi-modal personalized tasks, we also introduce a novel and comprehensive benchmark covered a variety of user requirements. Our experiments on the real-world benchmark showcase the model's potential, outperforming competitive methods specialized for each task.
Learning Conditional Invariances through Non-Commutativity
Abhra Chaudhuri · Serban Georgescu · Anjan Dutta
Invariance learning algorithms that conditionally filter out domain-specific random variables as distractors, do so based only on the data semantics, and not the target domain under evaluation. We show that a provably optimal and sample-efficient way of learning conditional invariances is by relaxing the invariance criterion to be non-commutatively directed towards the target domain. Under domain asymmetry, i.e., when the target domain contains semantically relevant information absent in the source, the risk of the encoder $\varphi^*$ that is optimal on average across domains is strictly lower-bounded by the risk of the target-specific optimal encoder $\Phi^*_\tau$. We prove that non-commutativity steers the optimization towards $\Phi^*_\tau$ instead of $\varphi^*$, bringing the $\mathcal{H}$-divergence between domains down to zero, leading to a stricter bound on the target risk. Both our theory and experiments demonstrate that non-commutative invariance (NCI) can leverage source domain samples to meet the sample complexity needs of learning $\Phi^*_\tau$, surpassing SOTA invariance learning algorithms for domain adaptation, at times by over 2\%, approaching the performance of an oracle. Implementation is available at https://github.com/abhrac/nci.
The Expressive Power of Transformers with Chain of Thought
William Merrill · Ashish Sabharwal
Recent theoretical work has identified surprisingly simple reasoning problems, such as checking if two nodes in a graph are connected or simulating finite-state machines, that are provably unsolvable by standard transformers that answer immediately after reading their input. However, in practice, transformers' reasoning can be improved by allowing them to use a "chain of thought" or "scratchpad", i.e., generate and condition on a sequence of intermediate tokens before answering. Motivated by this, we ask: Does such intermediate generation fundamentally extend the computational power of a decoder-only transformer? We show that the answer is yes, but the amount of increase depends crucially on the amount of intermediate generation. For instance, we find that transformer decoders with a logarithmic number of decoding steps (w.r.t. the input length) push the limits of standard transformers only slightly, while a linear number of decoding steps adds a clear new ability (under standard complexity conjectures): recognizing all regular languages. Our results also imply that linear steps keep transformer decoders within context-sensitive languages, and polynomial steps make them recognize exactly the class of polynomial-time solvable problems---the first exact characterization of a type of transformers in terms of standard complexity classes. Together, our results provide a nuanced framework for understanding how the length of a transformer’s chain of thought or scratchpad impacts its reasoning power.
*Low-Rank Adaptation* (LoRA), a parameter-efficient fine-tuning method that leverages low-rank adaptation of weight matrices, has emerged as a prevalent technique for fine-tuning pre-trained models such as large language models and diffusion models.Despite its huge success in practice, the theoretical underpinnings of LoRA have largely remained unexplored. This paper takes the first step to bridge this gap by theoretically analyzing the expressive power of LoRA. We prove that, for fully connected neural networks, LoRA can adapt any model $f$ to accurately represent any smaller target model $\bar{f}$ if LoRA-rank $\geq(\text{width of }f) \times \frac{\text{depth of }\bar{f}}{\text{depth of }f}$, under a mild assumption. We also quantify the approximation error when the LoRA-rank is lower than the threshold. For Transformer networks, we show any model can be adapted to a target model of the same size with rank-$(\frac{\text{embedding size}}{2})$ LoRA adapters.All our theoretical insights are validated by numerical experiments.
Quasi-Monte Carlo for 3D Sliced Wasserstein
Khai Nguyen · Nicola Bariletto · Nhat Ho
Monte Carlo (MC) integration has been employed as the standard approximation method for the Sliced Wasserstein (SW) distance, whose analytical expression involves an intractable expectation. However, MC integration is not optimal in terms of absolute approximation error. To provide a better class of empirical SW, we propose quasi-sliced Wasserstein (QSW) approximations that rely on Quasi-Monte Carlo (QMC) methods. For a comprehensive investigation of QMC for SW, we focus on the 3D setting, specifically computing the SW between probability measures in three dimensions. In greater detail, we empirically evaluate various methods to construct QMC point sets on the 3D unit-hypersphere, including the Gaussian-based and equal area mappings, generalized spiral points, and optimizing discrepancy energies. Furthermore, to obtain an unbiased estimator for stochastic optimization, we extend QSW to Randomized Quasi-Sliced Wasserstein (RQSW) by introducing randomness in the discussed point sets. Theoretically, we prove the asymptotic convergence of QSW and the unbiasedness of RQSW. Finally, we conduct experiments on various 3D tasks, such as point-cloud comparison, point-cloud interpolation, image style transfer, and training deep point-cloud autoencoders, to demonstrate the favorable performance of the proposed QSW and RQSW variants.
An Agnostic View on the Cost of Overfitting in (Kernel) Ridge Regression
Lijia Zhou · James Simon · Gal Vardi · Nathan Srebro
We study the cost of overfitting in noisy kernel ridge regression (KRR), which we define as the ratio between the test error of the interpolating ridgeless model and the test error of the optimally-tuned model. We take an ``agnostic'' view in the following sense: we consider the cost as a function of sample size for any target function, even if the sample size is not large enough for consistency or the target is outside the RKHS. We analyze the cost of overfitting under a Gaussian universality ansatz using recently derived (non-rigorous) risk estimates in terms of the task eigenstructure. Our analysis provides a more refined characterization of benign, tempered and catastrophic overfitting (cf. Mallinar et al. 2022).
SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression
Tim Dettmers · Ruslan Svirschevski · Vage Egiazarian · Denis Kuznedelev · Elias Frantar · Saleh Ashkboos · Alexander Borzunov · Torsten Hoefler · Dan Alistarh
Recent advances in large language model (LLM) pretraining have led to high-quality LLMs with impressive abilities. By compressing such LLMs via quantization to 3-4 bits per parameter, they can fit into memory-limited devices such as laptops and mobile phones, enabling personalized use. Quantizing models to 3-4 bits per parameter can lead to moderate to high accuracy losses, especially for smaller models (1-10B parameters), which are suitable for edge deployment. To address this accuracy issue, we introduce the Sparse-Quantized Representation (SpQR), a new compressed format and quantization technique that enables for the first time \emph{near-lossless} compression of LLMs across model scales while reaching similar compression levels to previous methods. SpQR works by identifying and isolating \emph{outlier weights}, which cause particularly large quantization errors, and storing them in higher precision while compressing all other weights to 3-4 bits, and achieves relative accuracy losses of less than $1\%$ in perplexity for highly-accurate LLaMA and Falcon LLMs. This makes it possible to run a 33B parameter LLM on a single 24 GB consumer GPU without performance degradation at 15\% speedup, thus making powerful LLMs available to consumers without any downsides. SpQR comes with efficient algorithms for both encoding weights into its format, as well as decoding them efficiently at runtime. Specifically, we provide an efficient GPU inference algorithm for SpQR, which yields faster inference than 16-bit baselines at similar accuracy while enabling memory compression gains of more than 4x.
Pessimistic Nonlinear Least-Squares Value Iteration for Offline Reinforcement Learning
Qiwei Di · Heyang Zhao · Jiafan He · Quanquan Gu
Offline reinforcement learning (RL), where the agent aims to learn the optimal policy based on the data collected by a behavior policy, has attracted increasing attention in recent years. While offline RL with linear function approximation has been extensively studied with optimal results achieved under certain assumptions, many works shift their interest to offline RL with non-linear function approximation.However, limited works on offline RL with non-linear function approximation have instance-dependent regret guarantees. In this paper, we propose an oracle-efficient algorithm, dubbed Pessimistic Nonlinear Least-Square Value Iteration (PNLSVI), for offline RL with non-linear function approximation. Our algorithmic design comprises three innovative components: (1) a variance-based weighted regression scheme that can be applied to a wide range of function classes, (2) a subroutine for variance estimation, and (3) a planning phase that utilizes a pessimistic value iteration approach. Our algorithm enjoys a regret bound that has a tight dependency on the function class complexity and achieves minimax optimal instance-dependent regret when specialized to linear function approximation. Our work extends the previous instance-dependent results within simpler function classes, such as linear and differentiable function to a more general framework. To the best of our knowledge, this is the first statistically optimal algorithm for nonlinear offline RL.
GROOT: Learning to Follow Instructions by Watching Gameplay Videos
Shaofei Cai · Bowei Zhang · Zihao Wang · Xiaojian Ma · Anji Liu · Yitao Liang
We study the problem of building a controller that can follow open-ended instructions in open-world environments. We propose to follow reference videos as instructions, which offer expressive goal specifications while eliminating the need for expensive text-gameplay annotations. A new learning framework is derived to allow learning such instruction-following controllers from gameplay videos while producing a video instruction encoder that induces a structured goal space. We implement our agent GROOT in a simple yet effective encoder-decoder architecture based on causal transformers. We evaluate GROOT against open-world counterparts and human players on a proposed Minecraft SkillForge benchmark. The Elo ratings clearly show that GROOT is closing the human-machine gap as well as exhibiting a 70% winning rate over the best generalist agent baseline. Qualitative analysis of the induced goal space further demonstrates some interesting emergent properties, including the goal composition and complex gameplay behavior synthesis.
Image Translation as Diffusion Visual Programmers
Cheng Han · James Liang · Qifan Wang · MAJID RABBANI · Sohail Dianat · Raghuveer Rao · Yingnian Wu · Dongfang Liu
We introduce the novel Diffusion Visual Programmer (DVP), a neuro-symbolic image translation framework. Our proposed DVP seamlessly embeds a condition-flexible diffusion model within the GPT architecture, orchestrating a coherent sequence of visual programs ($i.e.$, computer vision models) for various pro-symbolic steps, which span RoI identification, style transfer, and position manipulation, facilitating transparent and controllable image translation processes. Extensive experiments demonstrate DVP’s remarkable performance, surpassing concurrent arts. This success can be attributed to several key features of DVP: First, DVP achieves condition-flexible translation via instance normalization, enabling the model to eliminate sensitivity caused by the manual guidance and optimally focus on textual descriptions for high-quality content generation. Second, the frame work enhances in-context reasoning by deciphering intricate high-dimensional concepts in feature spaces into more accessible low-dimensional symbols ($e.g.$, [Prompt], [RoI object]), allowing for localized, context-free editing while maintaining overall coherence. Last but not least, DVP improves systemic controllability and explainability by offering explicit symbolic representations at each programming stage, empowering users to intuitively interpret and modify results. Our research marks a substantial step towards harmonizing artificial image translation processes with cognitive intelligence, promising broader applications.
Democratizing Fine-grained Visual Recognition with Large Language Models
Mingxuan Liu · Subhankar Roy · Wenjing Li · Zhun Zhong · Nicu Sebe · Elisa Ricci
Identifying subordinate-level categories from images is a longstanding task in computer vision and is referred to as fine-grained visual recognition (FGVR). It has tremendous significance in real-world applications since an average layperson does not excel at differentiating species of birds or mushrooms due to subtle differences among the species. A major bottleneck in developing FGVR systems is caused by the need of high-quality paired expert annotations. To circumvent the need of expert knowledge we propose Fine-grained Semantic Category Reasoning (FineR) that internally leverages the world knowledge of large language models (LLMs) as a proxy in order to reason about fine-grained category names. In detail, to bridge the modality gap between images and LLM, we extract part-level visual attributes from images as text and feed that information to a LLM. Based on the visual attributes and its internal world knowledge the LLM reasons about the subordinate-level category names. Our training-free FineR outperforms several state-of-the-art FGVR and language and vision assistant models and shows promise in working in the wild and in new domains where gathering expert annotation is arduous.
Steve-Eye: Equipping LLM-based Embodied Agents with Visual Perception in Open Worlds
Sipeng Zheng · jiazheng liu · Yicheng Feng · Zongqing Lu
Recent studies have presented compelling evidence that large language models (LLMs) can equip embodied agents with the self-driven capability to interact with the world, which marks an initial step toward versatile robotics.However, these efforts tend to overlook the visual richness of open worlds, rendering the entire interactive process akin to ``a blindfolded text-based game.''Consequently, LLM-based agents frequently encounter challenges in intuitively comprehending their surroundings and producing responses that are easy to understand.In this paper, we propose Steve-Eye, an end-to-end trained large multimodal model designed to address this limitation.Steve-Eye integrates the LLM with a visual encoder which enables it to process visual-text inputs and generate multimodal feedback.In addition, we use a semi-automatic strategy to collect an extensive dataset comprising 850K open-world instruction pairs, empowering our model to encompass three essential functions for an agent: multimodal perception, foundational knowledge base, and skill prediction and planning.Lastly, we develop three open-world evaluation benchmarks, then carry out extensive experiments from a wide range of perspectives to validate our model's capability to strategically act and plan.Codes and datasets will be released.
Evaluating Language Models Through Negotiations
Tim R. Davidson · Veniamin Veselovsky · Michal Kosinski · Robert West
Commercial interests are racing to exploit language models' remarkable capability to display agent-like behavior. Indeed, a future where personal LM-based agents are widely adopted to perform complicated tasks involving planning and negotiating appears increasingly plausible. Current, predominantly static evaluation methods are ill-suited to evaluate such dynamic, multi-step applications. In this work, we therefore propose jointly evaluating LM performance and alignment through the lens of negotiation games. We argue that this common real-world task provides scalable, difficult-to-hack performance metrics while offering non-trivial insights into model decision-making. Crucially, negotiation games allow us to study both competitive and cooperative performance, modulate complexity, and side-step accidental evaluation data leakage. Using our evaluation setup, we report results for publicly accessible LMs from all major providers on a variety of negotiation games. Noteworthy takeaways include: (i) open-source models are currently unable to complete this task, (ii) cooperative bargaining games prove challenging, and (iii) the most powerful models do not always 'win'. Evaluation through negotiations complements existing evaluation efforts by providing a novel evaluation paradigm to study evolving language model agency. We release an open-source library to accelerate research in this critical direction and lower the technical boundaries for researchers outside of the machine learning field to contribute.
What does automatic differentiation compute for neural networks?
Sejun Park · Sanghyuk Chun · Wonyeol Lee
Forward- or reverse-mode automatic differentiation (AD) is a popular algorithm for computing the derivative of a function expressed by a program. AD always outputs the correct derivative if a program does not use any non-differentiable functions and control flows; however, it may return an arbitrary value otherwise. In this work, we investigate what AD computes for neural networks that may contain non-differentiable functions such as ReLU and maxpools. We first prove that AD always returns a generalized derivative called a Clarke subderivative for networks with pointwise activation functions, if the minibatch size is one and all non-differentiable neurons have distinct bias parameters. We show that the same conclusion does not hold otherwise, but does hold under some mild sufficient conditions. We also prove similar results for more general networks that can use maxpools and bias parameters shared across different neurons. We empirically check our sufficient conditions over popular network architectures and observe that AD almost always computes a Clarke subderivative in practical learning setups.
Understanding In-Context Learning from Repetitions
Jianhao (Elliott) Yan · Jin Xu · Chiyu Song · Chenming Wu · Yafu Li · Yue Zhang
This paper explores the elusive mechanism underpinning in-context learning in Large Language Models (LLMs). Our work provides a novel perspective by examining in-context learning via the lens of surface repetitions. We quantitatively investigate the role of surface features in text generation, and empirically establish the existence of token co-occurrence reinforcement, a principle that strengthens the relationship between two tokens based on their contextual co-occurrences. By investigating the dual impacts of these features, our research illuminates the internal workings of in-context learning and expounds on the reasons for its failures. This paper provides an essential contribution to the understanding of in-context learning and its potential limitations, providing a fresh perspective on this exciting capability.
Implicit Gaussian process representation of vector fields over arbitrary latent manifolds
Robert Peach · Matteo Vinao-Carl · Nir Grossman · Michael David · Emma-Jane Mallas · David Sharp · Paresh Malhotra · Pierre Vandergheynst · Adam Gosztolai
Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euclidean domains, including smooth manifolds, appearing in numerous fields such as computer vision, dynamical systems, and neuroscience. However, these approaches assume that the manifold underlying the data is known, limiting their practical utility. We introduce RVGP, a generalisation of GPs for learning vector signals over latent Riemannian manifolds. Our method uses positional encoding with eigenfunctions of the connection Laplacian, associated with the tangent bundle, readily derived from common graph-based approximation of data. We demonstrate that RVGP possesses global regularity over the manifold, which allows it to super-resolve and inpaint vector fields while preserving singularities. Furthermore, we use RVGP to reconstruct high-density neural dynamics derived from low-density EEG recordings in healthy individuals and Alzheimer's patients. We show that vector field singularities are important disease markers and that their reconstruction leads to a comparable classification accuracy of disease states to high-density recordings. Thus, our method overcomes a significant practical limitation in experimental and clinical applications.
Learning Hierarchical World Models with Adaptive Temporal Abstractions from Discrete Latent Dynamics
Christian Gumbsch · Noor Sajid · Georg Martius · Martin V. Butz
Hierarchical world models can significantly improve model-based reinforcement learning (MBRL) and planning by enabling reasoning across multiple time scales. Nonetheless, the majority of state-of-the-art MBRL methods still employ flat, non-hierarchical models. We propose Temporal Hierarchies from Invariant Context Kernels (THICK), an algorithm that learns a world model hierarchy via discrete latent dynamics. The lower level of THICK updates parts of its latent state sparsely in time, forming invariant contexts. The higher level exclusively predicts situations involving context state changes. Our experiments demonstrate that THICK learns categorical, interpretable, temporal abstractions on the high level, while maintaining precise low-level predictions. Furthermore, we show that the emergent hierarchical predictive model seamlessly enhances the abilities of MBRL or planning methods. We believe that THICK contributes to the further development of hierarchical, context-conditioned, event-predictive world models that can enhance planning and reasoning abilities and produce more human-like behavior.
Random Sparse Lifts: Construction, Analysis and Convergence of finite sparse networks
David Robin · Kevin Scaman · marc lelarge
We present a framework to define a large class of neural networks for which, by construction, training by gradient flow provably reaches arbitrarily low loss when the number of parameters grows. Distinct from the fixed-space global optimality of non-convex optimization, this new form of convergence, and the techniques introduced to prove such convergence, pave the way for a usable deep learning convergence theory in the near future, without overparameterization assumptions relating the number of parameters and training samples. We define these architectures from a simple computation graph and a mechanism to lift it, thus increasing the number of parameters, generalizing the idea of increasing the widths of multi-layer perceptrons. We show that architectures similar to most common deep learning models are present in this class, obtained by sparsifying the weight tensors of usual architectures at initialization. Leveraging tools of algebraic topology and random graph theory, we use the computation graph’s geometry to propagate properties guaranteeing convergence to any precision for these large sparse models.