Skip to yearly menu bar Skip to main content


Spotlight

DreamFlow: High-quality text-to-3D generation by Approximating Probability Flow

Kyungmin Lee · Kihyuk Sohn · Jinwoo Shin

Abstract:

Recent progress in text-to-3D generation has been achieved through the utilization of score distillation methods: they make use of the pre-trained text-to-image (T2I) diffusion models by distilling via the diffusion model training objective. However, such an approach inevitably results in the use of random timesteps at each update, which increases the variance of the gradient and ultimately prolongs the optimization process. In this paper, we propose to enhance the text-to-3D optimization by leveraging the T2I diffusion prior in the generative sampling process with a predetermined timestep schedule. To this end, we interpret text-to-3D optimization as a multi-view image-to-image translation problem, and propose a solution by approximating the probability flow. By leveraging the proposed novel optimization algorithm, we design DreamFlow, a practical three-stage coarse-to-fine text-to-3D optimization framework that enables fast generation of high-quality and high-resolution (i.e., 1024×1024) 3D contents. For example, we demonstrate that DreamFlow is 5 times faster than the existing state-of-the-art text-to-3D method, while producing more photorealistic 3D contents.

Chat is not available.